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ABSTRACT

The torsional behaviour of steel wire ropes used on Koepe winders for vertical shafts is
analysed. Theoretical models have been developed for the behaviour of both the head and
tail ropes after correcting an assumption made by previous researchers regarding the
torque in the ropes. The theoretical models utilise experimentally obtained rope properties.
The properties were measured from rope samples tested in a laboratory using specially
developed equipment and software. Instruments were designed and used for in-situ
measurements on an 1800 m deep shaft during a complete return trip. Some of the
measurements were affected by unexpected strong torsional oscillations. However the
general trends of the measured torsional behaviour were correctly predicted by the
theoretical models. Discrepancies are attributed to the difficulties of obtaining true rope
properties, to assumptions made in order to obtain a workable model and to inaccuracies
in the measured behaviour because of the strong torsional oscillations. Further research is
recommended. Nevertheless there is sufficient correlation between the models and the
experiments, as well as with other published results, to draw certain conclusions with
confidence. In particular the results confirm the adverse effect of hoisting depth, the need
to use non-spin ropes and the need for swivels at both ends of freely looped tail ropes.
New findings include the importance of balanced frictional torque between the two swivels
of a tail rope and the realisation that the rope rotation is caused by the torque difference
between the two legs of a head or tail rope and not the absolute value of the torques. The
results also emphasize the important role of the torsional stiffness of a rope in relation to
its torsional behaviour. The use of theoretical models to design or select ropes suitable for
specific Koepe winders is suggested.
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8 CONCLUSIONS AND RECOMMENDATIONS

As pointed out by Dr. J.T.D. Fritz previous research included an error in the assumption that
the torque in hoisting ropes varies along their length. Assuming constant torque, new
theoretical models were developed. The predictions of these models, based on
laboratory measurements of rope properties were tested on a working Koepe winder.

Difficulties were encountered during some measurements on a working Koepe winder in the
form of strong torsional vibrations. Such measurements involve considerable preparation
and coordination with officers on the mine and could not be repeated. Nevertheless an
attempt has been made to extract results by analytical manipulation to eliminate the effect of
the vibrations.

8.1 Findings Related to the Measured and Calculated Results
Differences between measured and predicted behaviour involved the following:

The head rope rotation measured by the chalk line test, was significantly lower
than the calculated value. The difference is attributed to:

a.  The assumption made in the theoretical model that the
loading and unloading torque tension curves were the same,
I.e. hysteresis was neglected.

b.  Differences between actual torsional properties of the rope
and those measured on a short sample in the laboratory.

The differences between the measured and calculated torque values in both head
and tail ropes were substantial. However, these differences could possibly be
justified by:

a.  The assumptions made in the theoretical model.

b.  The fact that measurements were not done in a laboratory
under controlled conditions, but on site with unknown
factors and assumptions about the test conditions and the
rope properties.
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Despite the differences between the measured and calculated values, the
theoretical models have correctly predicted the trends and direction of the
variation of the torque and the rope rotation. The models have therefore correctly
qualified but not accurately quantified the ropes' behaviour.

8.2 Findings Related to Previous Work

The work presented in this dissertation has confirmed certain conclusions reached by
previous researchers, namely:

The rotation of both head and tail ropes is a function of the square of the hoisting
depth.

The head and tail rope portions close to the conveyances are subjected to the
greatest lay angle changes. These portions are also subjected to the most
severe fatigue loading. Special attention must therefore be given to those
portions during rope inspection.

A rope with a zero C factor will eliminate lay angle variations and rope rotation.

On Koepe winders where the tail loop is formed freely without a tail sheave it is
necessary to install low frictional torque swivels at both ends of the rope.

The present study has also given theoretical proof to certain opinions and practices
adopted by rope users over the years such as the fact that:

A rope with a zero or very low C factor is susceptible to birdcaging problems.
A certain amount of positive torque, which tends to tighten the outer strands, is
desirable in the head rope.
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8.3 New Findings
The following findings, which the author believes to be new, follow from this research:

The lay angle variations and therefore the rope rotation for both head and tail rope
are a result of the torque difference in the two sections of the rope and not of the
absolute value of the torque in the ropes.

The torsional behaviour of multi-strand non-spin head ropes is more sensitive to
the introduction of negative than positive rotation.

Multi-strand non-spin head ropes do not rotate when the conveyances are
loaded or unloaded. However triangular stand ropes rotate during these
Processes.

The variation, with tensile load, of the frictional torque of the swivels on the two
legs of a freely looped tail rope must be minimum. This will ensure that
both swivels rotate simultaneously during the trip, preventing the two legs of
the rope from intertwining.

The following additional findings, supported by the author, are a matter of controversy
among rope users:

The fact that both the head and tail rope rotation are functions of the square of
the hoisting depth should not be seen as a limitation to the application of the
Koepe system to deep level shafts. With proper rope design, rope selection and
operating procedures, the problems associated with the torsional behaviour can be
overcome.

Lay angle variations and rope rotation can be minimised by appropriate rope
design. A rope with a high torsional stiffness or an appropriate shape of torque-
tension curves can give the desired results.
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Rope life improvements achieved with the installation of non-spin
ropes are mainly due to the higher torsional stiffness of these ropes.
Their lower torque factor has a lesser influence.

8.4 Recommendations for Further Work

Further research, aimed at improving the quantitative accuracy of
predictions of rope behaviour, is recommended. In particular:

Modelling of the torsional behaviour of the ropes taking into account
hysteresis effects will increase the accuracy of the calculations. This
however will result in a significantly more complex algorithm. The
condition of each rope element will depend not only on the torque
and tension in the element but also on the torque and tension history.

Further experiments on Koepe winders are recommended to
measure the torque variation in both head and tail ropes.

Further investigation into the torsional properties of wire ropes is
recommended. Aspects such as variation of the torsional properties
of ropes along their length and effective torsional stiffness of a wire
rope in service should be investigated.
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ABSTRACT

The torsional behaviour of steel wire ropes used on Koepe winders for
vertical shafts is analysed. Theoretical models have been developed for
the behaviour of both the head and tail ropes after correcting an
assumption made by previous researchers regarding the torque in the
ropes. The theoretical models utilise experimentally obtained rope
properties. The properties were measured from rope samples tested in a
laboratory using specially developed equipment and software. Instruments
were designed and used for in-situ measurements on an 1802 m deep shaft
during a complete return trip. Some of the measurements were affected by
unexpected strong torsional oscillations. However the general trends of
the measured torsional behaviour were correctly predicted by the
theoretical models. Discrepancies are attributed to the difficulties of
obtaining true rope properties, to assumptions made in order to obtain a
worksble model and to inaccuracies in the measured behaviour because of
the strong torsional oscillations. Further research is recommended.
Nevertheless there is sufficient correlation between the models and the
experiments, as well as with other published results, to draw certain
conclusions with confidence. In particular the results confirm the
adverse effect of hoisting depth, the need to use non-spin ropes and the
need for swivels at both ends of freely looped tail ropes. New findings
jnclude the importance of balanced frictional torque  between the two
swivels of a tail rope and the realisation that the rope rotation is
caused by the torgue difference between the two legs of a head or tail
rope and not the sbsolute value of the torques. The results also
emphasize the important role of the torsional stiffness of a rope in
relation to its torsional behaviour. The use of theoretical models to
design or select ropes suitable for specific Koepe winders is suggested.
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1.  INTRODUCTION
1.1 Koepe Mine Shaft Hoisting Systems

In 1877, the technical director of the Hannover Mining Company (Germany),
Frie?rich Koepe introduced the first mine shaft hoisting system utilizing
a contact friction principle to hoist the conveyances. In the following
decades the so-called Koepe winding installation replaced hundreds of
conventional drum winding systems. Two types of Koepe winders are in use
today. The tower mounted winder, with or without deflection sheave,
(Fig. 1.1) and the ground mounted winder, with or without fleet angle

(Fig. 1.2).

The Koepe winder can serve one or two shaft compartments and the
conveysnce can be suspended by more than one “head rope” (Fig. 1.3).
"Tail ropes” are used to balance the head ropes and are attached to the
bottom of the conveyance, in most cases by means of swivels. The number
of tail ropes is the same as the number of head ropes or one larger
dismeter rope can be used to balance more than one head rope. The tail
rope loop is formed freely or by means of tail sheaves.

Although the Koepe winder has been in use in Europe for more than 100
years without any significant problems, the installation of the system in
the deeper South African shafts in the late nineteen fifties resulted in
severe rope problems. Within a few weeks of installation broken wires
started to appear in the Lang’s Lay triangular strand head ropes. The lay
length pattern along the rope became seriously disturbed and after six
months the ropes had to be discarded because of distortion of strands due
to spinning and twisting. The rope spin had also an adverse effect on the
sheave tread 1ife, the severity of the wear being a function of the
winding depth. Tail ropes experienced problems such as the tendency to
deform into a figure of eight and birdcaging.
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The torsional behaviour of the ropes was identified as the reason for the
problems. Mathematical models of the torsional behaviour of Koepe head
and tail ropes were proposed but these were based on the incorrect
assumption ‘that the torque varies along the 1length of the rope. The
various resesrchers were led to this assumption by observing the variation
of the 1lay length along the rope. However the only way of varying the
torque along a length of vertical rope is by applying a torque externally
over that length.

1.2 Definitions

Some techpical terms or expressions, which are used repeatedly in this
dissertation, are defined below:

Toraue factor: If a wire rope is subjected to a tensile load F with its
two ends restrained from rotating relative to one another; a torque M=C.F
is induced in the rope. The coefficient C is called the torque factor and
its units are Nm/N. The torque factor is not necessarily a constant, it
can be a function of the applied tension and torque. The torque factor is
_commonly referred to as C factor.

Torsional stiffness: If the two ends of a length of wire rope, A\z, are
rotated relative to each other by A® degrees while under constant tensile
load F a torque M = T(A®//\z) is induced in the rope. The coefficient T
is the torsional stiffness and its units are Nm/(deg/m). The torsional
stiffness is not necessarily constant, it can be a function of the applied
tension and torque. The torsional stiffness is commonly referred to as
the T factor.

Low__toraue or non-spin rope: This is a wire rope constructed from two or
more layers of strands helicaly wound around a core 1in Aopposite

directions. It can also be a single strand rope constructed from multiple
layers of wires, helicaly wound around a core wire, with alternating lay
directions. Because of the alternate lay directions a non-spin rope under
tensile load develops relatively low torque. It has a low torque factor
and high torsional stiffness.



High torque rope: This is a wire rope constructed from a single layer of
strands helicaly wound around a core. Under tensile load a high torque
rope, as its name implies, develops relatively high torque. It has a high
torque.factér and low torsional stiffness.

Relative rotation: This is the rotation of a rope cross section with
respect to another cross section. The relative rotation is positive if it
is in the direction of the helix 1lay, in other words if it causes a
shorter 1lay length. Otherwise, it is negative. Its units are degrees,
radian or number of turns. The rate of rotation per unit length between
the two cross sections may vary.

Twist : This is the rotation of a rope cross section with respect to
snother cross section, per unit length. Its units are degrees per meter or
radian per meter.

Rotation of a cross section: This is the rotation of a rope cross section
while travelling in the shaft, with respect to a position which it
previously occupied and which is regarded as zero reference. The rotation
is regarded positive if it is in the direction of the helix lay.
Otherwise, it is negative. It has units of degrees, radians or number of
turns (of 368°).

Lay angle deviation: This is the change of the lay angle 8. It is
denoted by © and is positive if it causes shorter lay length. Otherwise,
it is negative.

Upgoing head rope: This is the section of the head rope between the
upgoing conveyance and the driving wheel.

Dovngoing head rope: This is the section of the head rope between the
driving wheel and the downgoing conveyance.

Upgoing tail rope: This is the section of the tail rope between the
upgoing conveyance and the tail rope loop.

Dosngoing tail rope: This is the section of the tail rope between the
downgoing conveyance and the tail rope loop.



Single trip or trip: A trip during which the upgoing conveyance is raised
from the bottom station to the top station.

Double trip or cycle: A trip during which the upgoing conveyance is
raised from the bottom station to the top station and then lowered to the
bottom station.

1.3 Review of Literature

The wire rope was introduced as a hoisting rope by Albert in 1834.
Although such an o0ld machine element, little theoretical work has been
published about its in-service behaviour. Most improvements on wire rope
design were rather a result of a trial and error approach than a result of
a rigorous understanding of the mechanisms which determine its behaviour
and affect its performance.

1.3.1 Literature on head ropes

Hermes and Bruens<1> were the first to attempt to explain the problem of
the torsional behaviour of Koepe head ropes. Based on their paper the
National Engineering Institute of the CSIR(2> proposed a revised
theoretical model for the torsional behaviour of Koepe head ropes. The
model incorporates the C and T factors as constants. The torgue along the
axis of the head rope is assumed to vary, an assumption which is obviously
incorrect because there is no external torgque applied to the rope between
the conveyance and the driving wheel. Dr. J.T.D. Fritz, formerly Head of
the Mine Equipment Research Unit of the CSIR drew the writer’s attention
to this error. Nevertheless, the final recommendation calling for the use
of non-spin ropes was implemented and resulted in marked improvements.
The problem of the rotation of the downgoing head rope is addressed by
Hitchen<®> and a formula is given to calculate the number of turns any
section of the head rope exhibits during a trip. The deeper the shaft,
the greater the number of turns. The C and T factors are once again
treated as constants. The chalk line test to measure the number of turns
the head rope rotates during the trip is described. A piece of chalk is
held against the downgoing head rope at the level of the driving wheel.



If the rope rotates as it travels downwards the chalk line forms a
spiral. During the next trip, when that section of the rope is the
upgoing one, the line is monitored at the driving wheel level. Since the
upgoing rope does not rotate, the number of turns counted is equal to the
number of rotations the rope exhibits.

Ulrich and Fuchs<4> report chalk 1line test results on Koepe head ropes
in Germany. They found that the number of turns a head rope exhibits on a
particular winder is a function of the time the rope has been in
operation. The number of turns was also found to be directly related to
the permanent elongation observed on the head ropes. During the first
stages of the ropes’ life the number of turns decreased significantly with
time. Significant permanent elongation of the head ropes was observed
during the same period. As the rope was ageing the number of turns
reached a constant value. In the same paper Ulrich and Fuchs suggest that
the rotation of the head rope might be responsible for internal damage to
the rope.

Since the problems associated with the torsional behaviour of Koepe head
ropes were identified only in the early nineteen sixties recommendations
on rope constructions before that do not discriminate between high torque

and low torque (i.e. non-spin) ropes. Hitchen<5.8.7>, in a series of
papers between 1948 and 1958, examines the performance of four types of
ropes on Koepe installations. These are six-strand round strand ropes,

six-strand triangular strand ropes, milti-strand non-spin ropes and
single strand locked coil ropes. Advantages and disadvantages of each of
the above four types of ropes are discussed but no reference is made to
the torsional behaviour of the ropes. The only remark made relating to
the torsional properties of the rope is that non-spin and locked coil
ropes would impose smaller turning moments on the conveyances.
Nevertheless, Hitchen indicates a personal preference for locked coil

ropes.

Pitt, Zeppenfeld and Hallet<®> investigated in 1858 the possible
spplication of Koepe winders in South African shafts. Again, the
torsional properties of the head ropes are ignored and they recommend both
locked coil and triangular strand ropes as suitable constructions for head

ropes. .



The problems associated with the torsional behaviour of the head ropes

were realised only after the installation of the first deep shaft Koepe
winder at Stilfontein in 1958.

Berry and Wainwright<®> review the spplication of Koepe winders in South
Africa during the early nineteen sixties. Conventional triangular strand
Langs Lay ropes selected as head ropes for the 1 352 meters deep Margaret
shaft at Stilfontein gave extremely short lives although, previously, they
had performed well at Bancroft (428 m deep) and Libanon (847 m deep). The
first as well as the second set of ropes had to be discarded prematurely
because of distortion of strands due to spinning. During the same period
similar problems were experienced at West Driefontein (1719 m deep). The
non-spin ropes installed subsequently eliminated the problem and behaved
relatively well. The mechanism of lay length variations for the head rope
is described and deviations of up to 15% from the as-msnufactured lay
length pattern were recorded.

The performance of fourteen types of ropes tried at Western Deep Levels,
Western Areas, West Driefontein and Vaal Reefs is analysed by Fuller and
Wainwright<i@>, The static load variation to which a rope cross section
is subjected during a trip is introduced as a variable in the study of the
fatigue endurance of Koepe head ropes. In a later paper, Wainwright<ii>
sugdests dynamic loading as one of the factors which influence the fatigue
performance of head ropes . He justifies the new factor by the fact that
inspection of head ropes pointed to a discrepancy between the sections of
the ropes which are subjected to maximum static load variation and the
region where Ffatigue wire failures were found. In the same paper
sugdestions are made for the design of head ropes

The Technical Services Department of Haggie Rand Ltd<12> reviewed the
head rope performance on five surface Koepe winders, namely: Stilfontein
Margaret shaft 1 350 metre deep, West Driefontein No. 5 shaft 1 710 metres
deep, Western Deep Levels No. 2 and No. 3 shafts both 1 982 metres deep



and Vaal Reefs No. 2 shaft 1 948 metres deep. The 15-strand "fishback"
rope had proved to be the most successful head rope. Premature failures
of these ropes were attributed to some extent to the release during
installation; of torque built up in the ropes. Release of torque would
loosen the outer strand and tighten the inner ones. This upsets the
stress distribution, and results in premature rope failure. The paper
recommends that slackening of the outer strands should be checked
periodically by disconnecting the rope at the bottom of the shaft taking
care to prevent the rope from spinning. In cases where the spin tends to
unlay the outer strands turns must not be released. Where spin tends to
tighten the outer strands, turns must be released and then five to six
turns must be put into the rope.

Fritz and Annear<13> examined the failure pattern of a 15-strand
fishback Koepe head rope discarded from Western Deep Levels No. 3 shaft.
The section of the wire rope which was subjected to bending and twist
variations by passing over the driving and deflection sheaves exhibited
between three and ten times more wire failures per unit length than rope
sections which were not subjected to these loads. The majority of
failures '(95% to 19@%) of sections subjected to all load combinations were
found in the inner strands.

1.3.2 Literature on tail ropes

The most critical problem of tail ropes on Koepe installations is the
tendency to deform into a figure of eight. Once again that problem is a
result of the tendency of a rope to rotate when under tensile load.
Hitchen<5.8> reports that flat ropes are used in most shafts in Germany
but he makes no comment on the reason why flat ropes are used as tail
ropes. Flat ropes, which are not in use in South Africa, have a
rectangular cross section. The strands or individual ropes of a flat rope
are not “closed” into a rope in a helical shape. They are laid in
parallel and held together by means of separate soft wires and they do not
develop torque when under tension. That eliminates the tendency of a tail
rope to deform into a figure of eight. The assembling is made by hand,
which makes the final product rather expensive, especially for deep shaft
applications.
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Pitt, Zeppenfeld and Hallet<®>, in their paper about the possible
application of Koepe winders in South Africa, recommend the use of
non-spin ropes, such as locked-coil, for tail ropes. They suggest that
flat ropes 'might cause problems during handling and transport in the deep
South African shafts. Tail sheaves are considered to be unnecessary and
the installation of timber baulks to restrain the twisting of the tail
ropes is suggested.

Berry and Wainwright<®> in their review of the application of Koepe
winders in South Africa state that non-spin ropes used as tail ropes were
reasonably successful. The use of swivels is not recommended where tail
sheaves are used, but they suggest that turns should be put periodically
into the tail ropes to remove any slack in the outer strands. When tail
sheaves are not used, free swivels are necessary and baulking arrangements
are suggested to prevent the rope from deforming into a figure of eight in
case of non-functioning swivels. :

A maximum frictional torque for swivels of 35 Nm under 102 kN tensile load
is recommended by Wainwright<11> in cases where tail sheaves are not
used. No reference is made in the paper as to how this figure was reached,
but it was measured at the Stilfontein Koepe winder.

The importance of tail rope maintenance is emphasized in a publication of
Haggie Rand Technical Services Department<14>. More production time is
lost due to tail rope problems than is lost due to head rope problems.
Freely operating swivels are recemmended on both ends of the rope when
tail sheaves are not used. The free looping of the tail rope is the ideal
design but requires enough space to allow for a minimum loop diameter of
45 times the rope dismeter. During installation of tail ropes with tail
sheaves free swivels are recommended, which must be locked after the first
three to four double trips. The swivels should be releassed every three
months and the spin must be let out under controlled conditions.
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The National Mechanical Engineering Institute of the CSIRC185> proposed a
model for the torsional behaviour of the tail ropes. The C and T factors
are treated as constants. As with the head ropes the model is based on
the incorrect assumption, that the torque varies along the rope length.
The difference in torgue between the two sections of the rope at the loop
of a freely suspended tail rope is claimed to be a property of the rope.
This is incorrect since the torgue in the two sections should be the
same.

Shelly <¢18.17,18> re-examines the behaviour of tail ropes, taking into
account that the C and T factors are not constant. The research focuses
on the use of swivels. The torque along the length of the rope is again
regarded as not constant. He recommends use of swivels with low
frictional resistance. He concludes that the tendency of the rope to
deform into a figure of eight is a function of the sum of the torque at
the two ends of the loop. The greater the sum, the greater the tendency
to form a figure eight.

The variation of the C and T factors of a 22mm 15-strand non-spin rope and
a 23mm iB—strand non-spin rope are determined experimentally by Fritz and
Annear<is>, The 22mm rope had a mean C factor 9,147.180-3 m end a T
factor of 185,86 Nm2/rad. The C factor for the 23mm rope was
1,088.10-3 m and the T factor 185,7 Nm2/rad.

1.3.3 Literature involving geometrical analysis

The papers discussed above considered the rope as an entity with inherent
properties of its own. In the following the properties of the rope are
derived from its geometrical construction. '

The first theoretical contribution towards the study of the torsional
loads induced in a wire rope under tension was made by Hruska<22>,
Using the lay angle of a wire in a rope as a parameter the tangential
forces in individual wires of a rope under tension were calculated. A
formula to calculate the resulting torque was subsequently derived.
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He mentions that a non-rotating rope can be designed but he questions the
practical use of such a rope. In two other papers Hruska(21.22> shows
how to calculate tensile and radial forces in the individual wires of a
rope. He demonstrates that the tensile strain in the straight core wire
of a strand under tensile load is greater than the strain in the helicaly
wound wires and in fact inner wires break first in a laboratory tensile
test on a strand. Hruska explains that in service outer wires instead of
inner wires break first because of abrasion and the high pressure to which
these wires are subjected on the sheave.

Machida and Duvelli<23> extended Hruska’s work using an advanced

geometrical approach. They developed explicit formulas for the
calculation of the torque, the axial load and bending moments of the wires
in a strand. The equations developed are linear. Measurements on

specially made epoxy oversized rope specimens show good correlation
between theoretical and experimental results. The authors show that the
axial load has no influence on the torsional rigidity of the strand.

Gibson, Cress, Kaufman and Gallant<24> following Hruska’s approach
developed‘ a simplified method of calculating torque induced in a rope
under tension. Assuming that the number of wires in the strands becomes
very large and their size very small in order to maintain the same metal
area, integrals instead of summation can be wused to determine the
generated torque. Excellent agreement between analytical and experimental
results is reported for six strand ropes and good sgreement for
non-rotating ropes.

Costello<25.28> and his fellow workers dealt with the mathematical
modeling of wire ropes in a more fundamental manner than previous
investigators. The strand is analysed as a collection of smooth helical
wires. These wires under tensile and torsional loads are deformed into a
different helix configuration. The system of differential equations which
leads from the non-deformed to the deformed condition is solved. The
stresses and strains within the strand are calculated. They conclude that
strands with ends fixed against rotation are stiffer than strands with
ends free to rotate. The stiffness of the strands according to the
authors is independent of the spplied axial load.
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The theory developed for strands 1is expanded by the Costello
team<27,28,28,32,31,32> for wire ropes with complex cross sections. The
strands are treated the same way as the individual wires were treated in
the prev1ous papers. The modulus of elasticity of different wire rope
constructions is calculated and correlates with experimental results.

1.4 Project

The objective of the present project was to model the torsional behaviour
of wire ropes used as head and tail ropes on Koepe winders. The study was
restricted to the tower mounted Koepe-winder without deflection sheave.
Two models were developed. The first one incorporates constant C and T
factors, while the second incorporates varying C and T factors. The use
of constant C and T factors makes the analysis easier and faster.
Modelling the behaviour with varying C and T factor made possible a
parametric study of the influence of the shape of C and T curves on the
torsional behaviour.

The C aﬁd T factors were measured experimentally at a specially designed
machine at the Mine Hoisting Technology laboratory of the CSIR. (The
design and construction of the machine were not part of the present

project).

Experiments to verify the theoretical model by measuring torsional and
tensile load in Koepe head and tail ropes were done at the West
Driefontein No. 5 shaft Koepe main winder.
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2. TORQUE TENSION PROPERTIES OF WIRE ROPES

The helicaly formed strands of a wire rope under tensile load tend to
unwind. Therefore a rope specimen under tensile load with its two ends
restricted from rotating relative to one another develops a torque. The
torque induced is a function of the tensile load applied to the rope and
the relative rotation introduced between the two ends of the specimen
prior to the application of the tensile load. The torgue can be
calculated by the following relation.

M =C.F + T.A\®//N\=z (2.1)
where

M : Is the torque developed in the specimen.

F : Is the tensile load applied to the specimen.

JAN ] : Is the relative rotation between the ends of the specimen.

Nz : Is the length of the rope specimen.

C : Is the torque factor as defined in Chapter 1.

T : Is the torsional stiffness'of the rope as defined in Chapter 1.

As was shown by McKenzie<33> the torque M is independent of the path
that the tension and twist are applied. It depends only on the final
values of F and A3/Az.

In order to determine the C and T factors of rope specimens, as was
mentioned in Chapter 1, a wire rope torque-tension machine has been
designed and constructed at the CSIR. During the course of this project
the machine was upgraded from a 522 kN/1520 Nm to 520 kN/3000 Nm. In
sddition new software packages were developed to control the machine, for
the data acquisition and to analyse the test results.
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2.1 Wire Rope Torque-Tension Machine

A configuration of the torgue-tension machine is given in Fig. 2.1. The
machine is divided into three functional systems: the hydraulic system,
the machine frame and the control system.

A brief description of the machine is given below, while a more detailed
analysis of the capabilities and limitations of the machine are given by
McKenzie<33>, In the same reference descriptions of another two
torque-tension machines, one in United Kingdom and one in Belgium are also
given.

The hydranlic system consists of a tensile load actuator, a hydraulic
motor which is used to introduce rotation between the two ends of the rope
and the power pack.

The main frame of the machine is made of two horizontal beams bolted to
the floor of the laboratory. The rope specimen is accommodated into two
conical type grips. The first grip is attached to the output shaft of a
reduction gearbox driven by the hydraulic motor. The input shaft of the
gearbox can be locked by means of a friction brake. The second grip is
bolted to the piston of the actuator. The other end of the piston is
connected to & scissors mechanism which allows longitudinal movement of
the piston but prevents it from rotating.

The control system is divided into the tensile load control system and the
data scquisition system. The tensile load is controlled by regulating the
pressure in the actuator through a proportional pressure relief valve.

A configuration of the data acquisition system is given in Fig. 2.2. The
torque and tensile load in the rope are measured by a 3 900 Nm/500 kN
torque-tension loadcell in line with the rope specimen. The signals from
the loadcell are amplified by two Kyowa straingauge amplifiers. The
amplified signals are digitized by two HP3478A analog to digital
converters and fed in to the HP 87 computer.

An extensometer was designed and built so that the elongation of the rope
could be monitored during the torque-tension test. It consists of two
spring loaded telescopic tubes and is attached to the two endfittings of
the specimen. The elongation is measured by a IC Linear Variable

Differential Transformer (LVDT).
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2.2 Specimen Preparation and Test Procedure

From each rope specimen a nominal length of 4 492 mm was cut (dimension A
in Fig. 2.3). Two white metal collars were cast on the specimen defining
a nominal gauge length of 4 @58 mm (dimension B in Fig. 2.3). The two
ends of the specimen were subsequently unlaid and cast into white metal
conical endcaps. The specimen was then installed in the machine, taking
care not to introduce relative rotation between the two ends. The
extensometer was then installed. The test procedure was as follows:

(i) With the rope completely slack the zero and calibration values for
the torque and tension bridges were recorded. The calibration was
achieved by the standard procedure of switching parallel resistors
of known resistive value across one arm of each strain gauge
bridge.

(ii) A tensile load of approximately 8 kN, enough to keep the rope
straight, was applied to the specimen and diameter, lay length and
gauge length measurements were taken.

(iii) Maintaining the 8 kN tensile load the zero and calibration values
for the elongation were recorded. The elongation calibration was
carried out by inserting .a 37 mm spacer between the LVDT and the
extensometers bracket.

(iv) Three bedding in cycles were run. The maximum tensile load for each
cycle being 10% of the ropes’ actual breaking force. The actual
breaking force was obtained;from a tensile test to destruction of a
specimen cut from the same robe length.

(v) The test was then performed by progressively increasing the tensile
load while recording torque, elongation and tensile load acting on
the rope. The maximum tensile load for the test was 30% of the
ropes’ actual breaking force or 520 kN whichever was smaller. The
loading rate was slow (approximately 40 kN per minute) in order to
allow the computer to collect sufficient data.



(vi) Different end rotations were applied to the specimen and, for each
rotation, steps iv and v were repeated.

T

Figure 2.3 Wire rope specimen

2.3 Non-spin and Trisngular Strand Ropes

The use of non-spin wire ropes, constructed with more than one layer of
strands wound in opposite directions, is the common practice in South
African Koepe winders serving shafts deeper than 1 229 m. Triangular
strand ropes (one layer of six triangular shape strands) and round strand
ordinary lay ropes are used only on Koepe winders serving shallow shafts.

A family of torque-tension curves obtained from a 44 mm triangular strand
rope is shown in Fig. 2.4. The torque tension curves of a 44 mm non-spin
rope are shown in Fig. 2.5. The torque factor as a function of the
tensile 1load for the two ropes is shown in Figs. 2.6 and 2.7. Figures 2.8
and 2.9 show the torsional stiffness of the two ropes. The elongation of
the two ropes for various end rotations is shown in Figs. 2.10 and 2.11.
The variation of the modulus of elasticity of the above ropes with tensile
load is shown in Fig 2.12 and 2.13. Full construction details of both
specimens can be found in Appendix A.
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The main differences in the torsional properties of the two ropes are:

- Under _the same load and end rotation the triangular strand rope
develops higher torque than the non-spin rope.

- The torque-tension curves of the triangular strand rope are almost

straight 1lines. The shape of the torgue-tension curves of the
non-spin  rope depends on the end rotation introduced to the
specimen.

- The torque factor of the non-spin rope is much lower than that of
the triangular strand rope. The torsional stiffness of the non-spin
rope is much higher than that of the triangular strand rope.

From the load elongstion curves we can see that the non-spin rope exhibits
little elongation as a result of the introduction of end rotation. The
triangular strand rope elongated significantly when end rotation was
introduced. The modulus of elasticity of the non-spin rope was slightly
higher than that of the triangular strand one. This could be due to the
different construction but might also be attributed to the fact that the
non-spin specimen was cut from a discarded rope after completing about
200.9070 trips while the triangular strand specimen was cut from a new

rope.
2.4 Load Sharing Mechanism in Multi-layer Non-spin Ropes

The non-linear shape of the torque-tension curves of non-spin ropes is a
result of uneven sharing of the tensile load between inner and outer
strands. At low loads and negative end rotation the inner strands carry a
greater share of the tensile load than the outer strands. The resulting
torque is therefore negative as shown in Fig. 2.5. For higher tensile
loads and positive end rotation even distribution of stresses between
jnner snd outer strands is achieved and the torque-tension curves become

linear.
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A method was developed for estimating the load sharing between the inner
and outer strands. The rope is subjected to a torque tension elongation
test under various end rotations. After the test and with the specimen in
the testing‘ machine, the outer strands of the rope are cut out and
removed. The inner strands are then subjected to a torque tension
elongation test under the same end rotations as the complete rope. The
same calibration and zero values are used for both tests.

The load elongation curves obtained from the two series of tests are then
compared. For a given end rotation and given strain, the difference in the
two tensile loads is assumed to be the tensile load in the outer strands
for the same end rotation and strain. This neglects internal friction.

The method was applied to the 44 mm non-spin rope, a discarded head rope
from West Driefontein. The percentage load carried by the inner and outer
strands as a function of the total tensile load for three end rotations is
shown in Fig. 2.14. It is seem that for a negative end rotation of -48°
and a tensile load up to 132 kN the outer strands of the rope are under
compression. That can be explained by the fact that the outer strands have
been unwound. Observation indicates that the outer strands become slack
and tend to bulge outwards. This is the first stage of birdcaging.

Using a similar approach the torgue contribution of the inner and outer
strands could be estimated for various end rotations.
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3. THEORETICAL MODEL OF THE HEAD ROPE

The theoretical analysis was restricted to the tower mounted Koepe winder
without deflection sheave (Fig. 1.1b). Two models were developed. The
first model incorporates the C and T factors as constants. The second
model uses the curves obtained from a torgue~tension test.

With reference to Fig. 3.1 the following notation was established:

h : Is the hoisting depth [m].

a: Is the overrun distance [m].

u : Is the distance travelled by the conveyances from the stations [m].

zi: Is the distance of a rope cross section from the i-th conveyance
[m}j. i = 1 for the upgdoing conveyance and i = 2 for the downgoing

conveyance. Both 21 and 2z relate only to their own compartment
and their limits are:

h+a-u
a+u

Z1

[
A TA
1A 1A

zZ2

3.1 Assumptions and Boundary Conditions

The following assumptions were made in order to simplify calculations:

a. The length of the rope in contact with the driving wheel is small
compared to the overall length of the head rope. It is therefore

neglected and the length of the head rope is:

Lh = h+ 2a (3.1)
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Figure 3.1 Configuration of Koepe winder
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b. The gross 1load of the two conveyances is the same and no loading or
unloading takes place.

c. . The weight per meter length of the head rope and that of the tail
rope are equal.

d. Only static loads are taken into consideration.

The analysis is based on the torque tension relation, equation 2.1, from
which an equation is derived for the relative rotation /\® over an element
of rope of length Az. The tension, F, varies linearly with position, z
and is expressed accordingly.

In the case of constant C and T factors (details in Appendix B)
integration allows for a direct derivation of the relative rotation & at
any position of the head rope. But in the case where these factors vary
and their variation is defined by empirical numerical data, a numerical
domputerized approach is necessary (details Appendix C).

In both cases, the resulting value of ® is a function of undetermined
torques in the ascending and descending ropes. To determine these torques
a number of boundary conditions are used, as follows:

a. The ropes are rigidly fixed to the conveyances i.e. the section
attached to the conveyance does not rotate.

b. It follows from the above that the total rotation over the whole
head rope is a constant and equal to the initial rotation, ®in,
i.e. the rotation introduced on installation of the rope.

c. While on the driving wheel, the tension in the rope may vary but no
rotation occurs.

In addition it is assumed that an element /\z about to enter the driving
wheel remains unchanged during the subsequent travel Au of the
conveyances (/Au = A\z). This assumption is readily acceptable if Az is
small enough.
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This assumption can not be justified for an element about to leave the
driving wheel because, as soon as it is free of the constraint of the
supporting material of the wheel, its A%/Az will change to adjust to
the new tension.

Finally the two sections of the head rope are assumed to be
interchangeable, i.e. at the end of its upwards trip, the upgoing rope
becomes the downgoing rope for the start of the next trip (and the
downgoing rope becomes the upgoing rope). That is illustrated in Fig. 3.2.

Figure 3.2 Interchangeability of the head rope sections
a. Start of the trip: left section of head rope upgoing and

right section downgoing.
b. End of trip, start of next trip: left section downgoing

and right section upgoing.
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3.2 Theoretical Model of the Head Rope Using Constant C and T Factors

As was menpioned for the case of constant C and T factors, integration
allows for a fully analytical solution of the problem. Explicit relations
for the torque and the rotation in both the upgoing and downgoing sections
of the head rope were derived in Appendix B. The relations are shown in
table 3.1 according to the following nomenclature:

Mi,u : Is the torque in the upgoing rope after a distsnce u was
travelled by the conveyances.

M2,u : Is the torque in the downgoing rope after a distance u was
travelled by the conveyances.

B1,u,=21: Is the relative rotation of a cross section of the upgoing rope
at a distance zi1i from the upgoing conveyance. The relative
rotation is calculated with respect to the cross section of the
rope which is attached to the upgoing conveyance.

$2,u,=2: Is the relative rotation of a cross section of the downgoing
rope at a distance 2zz from the downgoing conveyance. The
relative rotation is calculated with respect to the cross
section of the rope which is attached to the downgoing
conveyance.

P : Is the gdross weight of a conveyance plﬁs 50% of the weight of
the tail sheave (if there is one) and 53% of the weight of the
rope in the tail rope loop.

q : Is the weight of the ropes in N/m.

k : Is a constant egual to Cq/T.



Table 3.1 Head rope behaviour
Upgoing rope Ea.
Torque Mi,u = CP + Cq(h/2 + a2/Ln + u) + ®1nT/Ln 3.2
Relative | ®1,u.=z1 = k((h/2 + 82/Ln)z1 - 212/2) + ®anT/Ln 3.3
rotation
Downgoig rope Eq.
Torque Mz,u = CP + Ca(l/2 + a2/Ln + a(h - u)/(a + u)) + anl/Ln 3.4
Relative | ®2,u.=2 = k((h/2 + a2/Ln - uCh - u)/(a + v))zz - 222/2)
rotation +®1n22/Ln 3.5
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3.2.1 Lay angle variation

Variations in the relative rotation at a rope cross section during a trip
result in variations in the lay angle. A wire rope element at its
as-manufactured condition is shown in Fig. 3.3a. Figure 3.3b depicts the
same element after relative rotation A® was introduced between its two
cross sections. The lay angle increased from the as-manufactured value B
to B + 8.

Figure 3.3 . Wire rope element

The equations which give the variation of the lay angle during a trip for
both the upgoing and the downgoing rope were derived in Appendix B. For
the upgoing rope we have:

81= (k(h/2 + 82/Ln - z1) + @in/Ln).r.cos2p (3.6)
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where r is the distance of the centre of the rope cross section from the
centre of the outer strands. The equivalent relation for the downgoing
rope is:

02= (k(h/2 + a2/Ln - u¢h - u)/(a + u) - z2)
+ $in/Ln)r.cosz2p (3.7)

The lay angle deviation for the upgoing rope 1is independent of the
travelled distance. This is in accordance with the fact that no rotation

occurs in that rope. A rope element in the upgoing rope therefore
maintains a constant lay angle value until it enters the downgoing section
of the rope. As soon as it enters the downgoing rope its lay angle

changes either in a positive direction (causing greater lay angle) or in a
negative direction (causing smaller lay angle).

There is only one value of the travelled distance u for which the lay
angle of a cross section of the upgoing rope entering the downgoing
section remains the same. As shown in Appendix B that is for

u° =482 + ah - a (3.8)

For u < u’ the lay angle of elements in the upgoing rope entering the
downgoing rope is smaller than the lay angle of their adjacent elements in
the downgoing rope. Those elements therefore rotate in a positive
direction in order to comply with the downgoing rope loading conditions.

For u > u” the lay angle of elements in the upgoing rope entering the
downgoing rope is greater than the lay angle of their adjacent elements in
the downgoing rope. In this case elements entering the downgoing section
of the head rope rotate in the negative direction.
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3.2.2 Rotation of the downgoing rope - Chalk test

From equation 3.6 it was shown that the upgoing rope does not rotate
during the trip. On the other hand the downgoing rope as can be seen from
equation 3.7 rotates continually during the trip. The rotation of the
downgoing rope can be determined experimentally by the so-called chalk
test described in Chapter 1.

As is shown in Appendix B the number of turns measured at the driving
wheel as a function of the travelled distance is given by the following
equation

N = k.u¢h - u)/360° (3.8

For u = h according to the above equation the rope exhibits zerc turns.
This means that the rope rotates as many clockwise turns as anticlockwise.
The change of direction happens at u = h/2 when:

N = k.h2/1440° (3.19)

The line drawn on the downgoing rope is actually a double spiral as is
shown in Fig. 3.4. Equation 3.18 shows that the number of turns is
proportional to the square of the hoisting depth h. This explains why
problems on Koepe winders manifested themselves only at the deep South
African shafts.



-38-

Driving wheel

CMarker

Figure 3.4 Chalk line test
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3.2.3 Application of the model to a practical example

The theoretical model of the torsional behaviour of a Koepe head rope
was spplied to the West Driefontein No. 5 shaft British General Electric
(BGE) Koepe winder. The particulars of the winder and the head rope are
given in Table 3.2.

The torque in the two sections of the rope during a trip is given in
Figure 3.5. The torque in the upgoing rope increases linearly during the
trip. Rapid torque changes take place in the downgoing rope during the
first few metres of the trip. Figure 3.6 presents the torque difference
between the two sections of the head rope

The 1lay angle variation during a trip for various rope cross sections was
plotted in figures 3.7 to 3.18. Figure 3.9 was drawn for the section
which undergoes no changes, as it passes through the driving wheel, in
accordance with equation 3.8. The minimum and maximum values of the lay
angle deviation for each rope cross section were plotted in Figure 3.11.
The greater lay angle variations occur in the rope sections closest to the
conveyances.

A graphical representation of the chalk test results is given 1in

Figure 3.12. A total of four turns are counted, two clockwise and two
anticlockwise.
Table 3.2 Particulars of West Driefontein No. 5 shaft Koepe winder

1
i Hoisting depth i h i 1700 m |
| Overrun distance | a | 25 m |
| Head rope weight | q | 85 N/m |
| Cross conveyance weight | P | 215 kN |
| Torque factor | C | 2,0007 Nm/N |
| Torsional stiffness | T | 52 Nm/de |
| Rotation during installation | ®in | @ deg |
L i | -
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3.3 Theoretical Model of the Head rope Using Variable C and T Factors

The assumption of constant C and T factors made in the previous section,
is a good spproximation for non-spin ropes for high tensile loads and
positive values of end rotation. For low loads the C and T factors vary
substantially with the tensile load and the twist introduced in the
specimen as illustrated in Figures 2.7 and 2.9.

In order to study the influence of the shape of the torque-tension curves
on the torsional behaviour of the head rope, a second model was
developed. The new model utilizes the actual shape of the torque-tension
curves. The assumption is made nevertheless that the shape of the curves
is the same during loading and unloading. Figure 2.5 is reproduced here as
Fig. 3.13 showing only the loading curves.

Since the torque along the rope is constant the lay angle varies in order
to accommodate the variation of the tensile load due to the rope weight.
In order to calculate this lay angle variation the results of Fig. 3.13
had to be modified to obtain values at constant torque. This was achieved
by building up a table of twist values for different torques and tepsions
at intervals of 1 Nm and 1kN respectively. Figure 3.14 illustrates some of
the values from that table. This table was used to obtain the twist at
each rope element for a constant torque value.

The torqgue is related to the boundary condition which is the relative
rotation between the two ends of the rope. However, whereas in the case of
constant C and T factors this relationship is explicit as in equation 3.2,
here a numerical algorithm is required to take into account the continuous
variation of C and T factors. The torque history during a trip will depend
primarily on the initial torque Mi,2 in the ascending rope.

The aldorithm described in the next section was devised to obtain, for a
given initial torque Mi,#, the compatible boundary condition $in. By
repeating for different values of Mi,e a series of such relations was
established as illustrated in Fig. 3.15. The alternative approach would
have been to start with a value of ®1n and obtain the compatible value

of Mi,e, but this was rejected because it would have involved
considerable trial and error calculations.
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3.3.1 Head rope model algorithm

There are two parts in this algorithm: One for the upgoing rope and one
for the downgoing rope. The section for the upgoing rope is completed
first and recorded values are input in the calculation for the downgoing
rope. Initial input parameters include a rope element of length A\l, small
enough to assume that the twist over that element is constant.

Step 1: Assume an initial torque value for the upgoing section of the
head rope.

Step  2: Utilizing the torgue-tension tables of the rope calculate the
twist in each element of the upgoing rope.

Step  3: Calculate the relative rotation between the two ends of the
upgoing rope, which is equal to the sum of the twist in all elements
miltiplied by the element length.

Step 4: Decrease the length of the upgoing rope by Al.

Step 5: Calculate the new value of the relative rotation between the two
ends of the upgoing rope.

Step 6: Increase the torque value in the upgoing rope by a small step.
Step 7: Calculate the new twist value for each element.

Step 8: Calculate the new relative rotation value between the two ends of
the upgoing rope.

Step  9: If the new relative rotation value is the same as the one
calculated in Step 5 go to Step 11.
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Step  1@: Decrease or increase torque value depending on whether the new
relative rotation value is smaller or greater than the old one and go to
Step 7.

Step 11: Record torque value and twist distribution in upgoing rope for
the travelled distance, u.

Step 12: If the trip has not been completed, go to Step 4. Otherwise go
to Step 1 of downgoing rope.

Downgoing rope

Step  1: Assuming that no loading or unloading takes place, the initial
torque value in the downgoing rope is the same as the final torque in the
upgoing rope (allowance for 1loading and unloading was included in the
algorithm but was not used for this research).

Step 2 to 12: As for upgoing rope, except:

(i) | Wherever it states upgoing, read downgoing.
(11) In step 4 the rope length is increased by Al
(1ii) At‘the completion of the trip continue as below.

Step 13: Calculate the relative rotation, ®in introduced to the head
rope on installation.

| Step 14: From the recorded values of torque and twist calculate rotation
of the rope during the trip (Chalk test).

A computer program was developed to simulate the behaviour of the head
rope according to the above algorithm. A listing of the program is given
in Appendix C.
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3.3.2 Application of the model to a practical example

The theoretical model was once again applied to the West Driefontein No. 5
shaft Koepe winder. The results obtained from the model for the case of no
initial end rotation are presented in Figures 3.16 to 3.19. The results
are very similar to those obtained for constant C and T factors.

Figure 3.16 shows negative values of the torgque for most of the trip. This
implies that the contribution of the inner strands towards the total
torque in the rope is greater than the contribution of the outer strands
and therefore the inner strands carry a higher percentage of the total
tensile load in the rope.

The chalk test results are shown in Figure 3.17. Four turns are counted,
two clockwise and two anticlockwise.

The variation of the lay angle is shown in Figures 3.18 and 3.198, where a
slight variation of the lay angle in the upgoing rope is noticed.

3.3.3 Influence of the shape of the torque-tension curves

Introduction of end rotation causes the winder to operate in a different
area of the torgue-tension diagram, Figure 3.13. For the case mentioned
above, where no end rotation was introduced, the winder operates in area A
of the diagram. Introduction of 27 rotations in the positive direction
would cause the winder to operate in area B. If 47 rotations in the
negative direction are introduced the winder would operate in area C.
These particular values of 27 and 47 rotations were obtained from
particular runs of the algorithm mentioned earlier. The torque in the
rope during the trip and the chalk test results for areas B and C are
presented in Figures 3.20 to 3.23. ‘



The difference in the torque between the two sections of the rope (upgoing
and downgoing) 1is shown in Figure 3.24, for variocus values of the initial
rotation, ®in. Figure 3.25 illustrates the equivalent results of the
chalk line test, for the middle cross section of the head rope. Both
relations are parasbolic, with the slope of the curves decreasing from
negative to positive values of initial rotation. This leads to the
conclusion that the torsional behaviour is more sensitive to the
introduction of negative than positive end rotation.
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THEORETICAL MODEL OF THE TAIL ROPE

The torsional behaviour of the tail rope was also modelled using both
constant and variable C and T factors. As was mentioned in the
introduction the tail loop can either be formed freely or by means of tail
rope sheaves. Theoretical models for the torsional behaviour of ropes on
both systems are given in the following paragraphs.

With reference to Figure 4.1 the following notation was established:

h:

" b:

u:
Zi:

4.1

Is the hoisting depth [m].

Is the distance between lower station and tail rope loop [m].

Is the distance travelled by conveyances from stations [m].

Is the distance of a tail rope cross section from the i-th
conveyance [m], i = 1 for the upgoing conveyance and i = 2 for the
downgoing one. Both zi1 and zz relate only to their own
compartment and their limits are:

2
%

zi1 b +u
zzSh+b-u

A A

Assumptions and Boundary Conditions

In order to simplify calculations the following assumptions were made:

The length of the rope in the tail rope loop is small compared to
the overall length of the tail rope. It is therefore neglected and
the total length of the tail rope is:

Le =h+ 2b (4.1)
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b. For the calculation of tensile and torsional loads in the tail rope,
the two sections of the rope are assumed to be straight lines
parallel to each other.

c. Only static loads are taken into consideration.

As was the case with the head rope models, the analysis is based on the
torque tension relation 2.1, from which an eqguation is derived for the
relative rotation AP over a rope element Az. The tension in the two
sections of the rope, varies linearly with position z.

In the case of constant C and T factors, the relative rotation & at any
position of the head rope is derived directly by integration (details in
Appendix D). But in the case where these factors are not constant and
their variation is defined by empirical numerical data, a computerized
numerical approach is necessary (details in Appendix C).

In both cases, the value of & is a function of undetermined torque values,
in both the upgoing and downgoing ropes. To determine these torgues a
number of boundary conditions and additional assumptions are used for each
of the two tail rope arrangements.

4.1.1 Tail rope loop formed freely without a tail sheave

On Koepe winder installations where no tail sheave is used and the tail
rope is free to deform, it is common practice to employ swivels. Both
sections of the rope are attached to the conveyance by means of swivels.
‘The function of the swivel is to release the torque built up in the tail
rope and prevent the rope from deforming into a figure of eight. The swivel
starts rotating when the torque in the rope exceeds the static frictional
torque of the swivel’'s bearing and stops rotating when the torque in the
rope becomes smaller than the dynamic frictional torque of the swivel’s
bearing.



The assumption is made that the static frictional torque of the swivel is a
linear function of the axial load applied to it.

Me = a + b.F (4.2)
where

Ms : Is the static frictional torque of the swivel.

F : Is the tensile load applied to the swivel.

a, b : Are constant coefficients.

The dynamic frictional torque of the swivels is assumed to be equal to
zero.

Ma = @ (4.3)

It is also assumed that the rotation of the swivel takes place in
infinitesimal time. This assumption is necessary since we are dealing with
static loads. The equilibrium equation for the torque in the rope is not
valid during the time that the swivel rotate.

For the case of a freely formed tail loop, the following boundary
conditions are used:

a. The total rotation over each section of the tail rope, at any
instant, is equal to the algebraic sum of the rotation introduced
through rotation of the swivels and through rotation of the tail
loop.

b. The rope does not rotate while in the tail loop.

The sign convention implied in these two statements is explained in sectioﬁ
D.3 of the Appendix.
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4.1.2 Tail rope loop formed by means of a tail sheave

Where Koepe winders are used in deep South African shafts, it is common
practice to use tail sheaves. The tail sheaves are guided so as to
accomnodate vertical movement, but restrict rotational movement of the loop
in the horizontal plane. On winders where tail sheaves are employed, the
swivels are usually locked a few days after installation. It is
nevertheless recommended to free the swivels periodically, to allow
excessive spin to untwist.

The following boundary conditions are used in the two sections of the rope;

a. The swivels if used are locked. Therefore the rope cross section
attached to the conveyance does not rotate.

b. It follows from the above that the total rotation over the whole
length of the tail rope is & constant and equal to the initial
rotation, ®in, i.e. the rotation introduced on installation of the
rope.

c. The rope does not rotate while in the tail loop (while in contact
with the tail sheave).

In addition it is assumed that the relative rotation of an element Az
about to enter the tail loop remains unchanged during the subsequent
travel Aun (Au=/Az). This assumption is readily acceptable if Az is
small enough. |

Finally it is assumed that the two sections of the rope are
interchangeable, i.e. at the end of its upwards trip the upgoing rope
becomes the downgoing one for the start of the next trip and vice versa.
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4.2 Theoretical Model of the Tail Rope Using Constant C and T factors

In the case of constant C and T factors, as was mentioned above,
integration allows for an anslytical solution of the problem. Explicit
equations Ffor the torque and the relative rotation in both sections of the

rope were derived in Appendix D.

The equations for the case of a tail rope without tail sheave are shown in

table 4.1.

The equivalent equations for the case where a tail sheave is

used are shown in table 4.2. The following
nomenclature is employed:

Ql,u,zl

Qz,u.zz

Mi.,uw

Mz,u

Pt

Qzl

Ba2

Is the relative rotation of a cross section of the upgoing
rope at a distance 21 from the upgoing conveyance. The
relative rotation is calculated with respect to the
conveyance which, of course, does not rotate.

Is the relative rotation of a cross section of the
downgoing &rope at a distance 2zz from the downgoing
conveysance. The relative rotation is again calculated with

respect to the conveyance.

Is the torque in the upgoing section of the tail rope
during the trip.

Is the torque in the downgoing section of the tail rope
during the trip.

Is half of the gross weight of the rope in the tail rope
loop plus half of the weight of the tail sheave, if there
is one

Is the weight of the tail rope in N/m

Is the total angle that the upgoing rope swivel rotates.

Is the total angle that the downgoing rope swivel rotates.
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O : Is the rotation of the tail loop in the horizontal plane,
when there is no sheave.

01 : Is the lay angle deviation for the upgoing rope.
0= : Is the lay angle deviation for the downgoing rope.
k : Is a constant equal to Cq/T.

In the case where no swivels are employed the equations of tables 4.1 and
4.2 are continuous functions of the travelled distance, u. But in the case
where swivels are installed and are free to rotate the relations are not
continuous. Whenever a swivel rotates, the torque in the rope becomes zero
(equal to the dynamic frictional torque of the swivel). Then the angle that
each swivel rotates is calculated from equations 4.4 and 4.7 with Mi,u
and Mz,u equal to zero.



Table 4.1 Freely suspended tail rope without tail sheave

Upgoing rope Eq.
Torque Mi,u = CPe(2u - h)/Lt + Cq(2u - h)/2 + (Pa1 - %az2)T/Lt 4.4
Relative | ®1,u.z1 = ((Ba1 - Paz)/Lt - 2CPt(h + b - u)/(TLe)
rotation - Cth/(ZT))zl + Cqz12/(2T) 4.5
Lay angle| 61 = ((8s1 - $ez2)/Lt - 2CPt(h + b - u)/(TLt)
deviation - CqLe/(2T) + Caz1/T)r.cos2(B) 4.8
Downgoing rope Eq.
Torque Mz.u = CPt(h - 2u)/Lt + Ca(h - 2u)/2 + (®ez - Ba1)T/Le 4.7
Relative | ®2.u.22 = ((Baz - Pa1)/Lt -~ 2CPe(b + u)/(TLt) _
rotation - Cqale/(2T))z2 + Cqz22/(2T) 4.8
Lay angle| 62 = ((®az2 - ®a1)/Lt - 2CPe(b + u)/(TLt)
deviation - CqLt/(2T) + Cazz/T)r.cos2(B) 4.9
Tail loop| ¢ = - (Pea(h + b - u) + Bez(b + u))/Le
rotation - 2CPe¢(h + b - u)(b + u)/(TLe)
- Ca(h + b - uX(b + u)/(2T) 4.19
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Table 4.2 Tail rope loop formed by means of a tail sheave

Upgoing rope Eq.
Torque .Ml,u = CPt + Cq((2u - )Le2 + (h + b - u)((h + b)2
+ b2))/(2(b + u)Lt) + BinT/Lt 4.11
Relative | ®1,u.=z1 = k((2u - h)Le2 + (h + b - u)((h + b)Z + b2)
rotation - 2(b + W)2Lte)z1/(2(b + w)le)
+ kz12/2 + Binz1/Le 4.12
Lay angle| 81 = (k((2u - h)Lt2 + (h + b - u)((h + b)2 + b2)
deviation - 2(b + wW)2Le)/(2(b + u)Lt)
+ kz1 + ®in/Lt)r.cos2(B) 4.13
Downgoing rope Eq.
Torque Mz.u = CPt + Ca((h - 2u)Le + 2b(h + b))/(2Lt) + ®1nT/Le 4.14
Relative | ®2,u.=22z = - k((h + b)2 + b2)z2/(2Lt)
rotation + kz22/2 + ®inzz/Le 4.15
Lay angle] 82 = - (k((h + b)2 + b2)/(2Lt)
deviation + kzz + ®in/Lt)r.cos2(B) 4.16
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4.2.1 Application to a practical example

The theoretical model was applied to the West Driefontein No. 5 shaft BGE
Koepe winder. A five meter rope sample from a discarded tail rope was made
available by the mine. The specimen was subjected to a torgue-tension
test, and the torsional properties of the rope were determined. The
results of the torque-tension test are presented in Appendix A. The
. torsional stiffness of the rope was 25 Nm/deg and the torque factor
@,9027 Nm/N.

The results obtained from the theoretical models for both tail rope
configurations are summarised in the following paragraphs.

a. Freely suspended tail rope without tail sheave.

The theoretical model was aspplied to three different study cases:
(i) The swivels are locked.

(ii) The‘torsional torque of the swivels is constant.

(iii) The torsional torque of the swivels is a linear function of the
tensile load.

The results are as follows:
(i) Locked swivels (Figures 4.2).

The torque developed in the rope during the trip is shown in Fig. 4.Z2a.
The continuous line is the torque in the upgoing section of the rope and
the dbtted line is the torque in the downgoing section of the rope. As was
expected, the algebraic sum of the torqué in the two sections is equal to
Zero. The tail loop rotation is shown in Fig. 4.2b. It is obvious that
this winder can not operate with locked swivels. The loop rotates up to
eleven turns which would cause the two legs of the rope to intertwine for
some distance sbove the loop.
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(ii) Swivels with constant frictional torque (Figures 4.3).

The frictignal torque of both swivels is assumed constant and equal to
49 Nm. The torque induced in the two sections of the rope is shown in
Fig. 4.3a. The initial large drop in torque happens only during the first
trip after installation. As can be seen from Fig. 4.3b, the downgoing
swivel would rotate approximately 40 rotations during installation in order
to reach equilibrium condition. During the trip, torque is built up in the
rope and when the 48 Nm value is reached, both swivels rotate. The
rotation of the tail loop is shown in Fig. 4.3c. The maximum rotation of
the loop 1is Jjust 1less than 188° which salthough would cause the rope to
deform into a figure of eight the two legs of the rope would not touch.

The lay angle deviation for two different rope cross sections is shown in
Figs. 4.3d and 4.3e. The first cross section which is 59 m away from the
conveyance exhibits higher lay angle variations that the second cross
section which is 853 m away from the conveyance.

(iii) Frictional torque of the swivel a function of the tensile
load "(Figures 4.4).

For the 1last study case we assumed that the swivels have a frictional
torque of 20 Nm under =zero tensile load. The frictional torque of the
swivels increases with tensile loads and reaches the value of 40 Nm at the
maximum tensile load i.e. when the conveyance is at the top station.

The torque developed in the two sections of the rope is shown in
Fig. 4.4a. The tail loop rotation is presented in Fig. 4.4b and the
rotation of the swivels in Fig. 4.4c. Despite the fact that the maximum
frictional torque of the swivels was the same as for the second study case,
the tail loop rotates up to three rotations. That of course would cause
the rope to deform into a figure of eight.

The greater rotation of the tail loop 1is due to the the fact that the
swivels do not rotate at the same time. In order to accommodate the zero
torque equilibrium condition in both sections of the rope when only one
swivel rotates, the loop is forced to rotate further.
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b. Tail loop formed by means of a tail sheave and without swivels
(Figures 4.5).

The torque' developed in the tail rope for a winder that employs a tail
sheave is shown in Fig. 4.5a. The torque in the downgoing section of the
rope decreases linearly during the trip. Rapid torque changes take place
in the upgoing section of the rope during the first few meters of the trip.

The lay angle deviation for two cross sections of the rope at a distance of
% m and 859 m from the conveyances is shown in Figs. 4.5b and 4.5c
respectively. Cross sections close to the conveyances are subjected to
greater lay angle variations than the rest of the rope.
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4.3 Theoretical Model of the Tail rope Using Varisble C and T Factors

In paragraph 3.3 the theoretical model of the head rope using variable C
and T factors was established. As was mentioned the torque-tension curves
are not linear at low values of the tensile load. Since the tail rope
operates under very low tensile loads, the variable C and T factors
approach is a better model for the torsional behaviour of the tail rope
than the constant C and T factors approach.

The theoretical model was developed for a winder which employs a tail

sheave and the tail rope is attached to the conveyance without swivels.

The 1logistics of the tail rope theoretical model are the same as those of
head rope model. The torgue-tension curves of the tail rope are treated

the same way as was done in section 3.3 for the head rope.

4.3.1 Tail rope quel algorithm
Downgoing rope

As was the case with the head rope,there are two parts in the tail rope
algorithm: One for the downgoing and one for the upgoing rope. The
downgoing rope calculations are completed first and recorded values are
input in the calculation for the upgoing rope. A rope element Al is
again the initial input parameter.

Step  1: Assume an initial torque value for the downgoing section of the
tail rope.

Step  2: Utilizing the torque-tension tables of the tail rope calculate
the twist in each element of the downgoing rope.

Step 3: Calculate the relative rotation between the two ends of the
downgoing rope. which 1is equal to the sum of the twist in all the
elements, multiplied by the element length Al.
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Step 4: Decrease the length of the downgoing rope by Al.

Step 5: Calculate the new value for the relative rotation between the two
ends of the downgoing rope.

Step B6: Decrease the torgue value in the downgoing rope by a small step.
Step 7: Calculate the new twist value for each element.

Step 8: Calculate the new relative rotation value between the two ends of
the downgoing rope.

Step 9: If the new relative rotation value is the same as the one
calculated in Step 5 go to Step 11.

Step 14: Decrease or increase the torque value, depending on whether the
new relative rotation value is smaller or greater than the old one. Go to
Step 7.

Step  11: Record torque value and twist distribution in downgoing rope for
the travelled distance, u.

Step 12: If the trip has not been completed go to Step 4. Otherwise go
to Step 1 of the upgoing rope.

Upgoing rope

Step 1: The initial torque value in the upgoing rope is the same as the
final torque value in the downgoing rope.

Steps 2 to 12: As for the downgoing rope.

Step 13: Calculate the relative rotation introduced between the two ends
of the tail rope.
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A computer program was developed to simnlate the tail rope behaviour
according to the above algorithm. A listing of the program can be found
in Appendix C.

4.3.2 Application to a practical example

The theoretical model of the tail rope with variasble C and T factors was
also applied to the West Driefontein No. 5 shaft BGE Koepe winder. The
tensile load in & rope element of the tail rope about to enter or leave
the tail sheave, for the particular winder, is spproximately 18 kN, i.e.
half the weight of the tail sheave. The available torgue-tension data
ranged from 25 kN to 520 kN (torgue-tension machine range). It was
therefore assumed that the weight of the tail sheave was 80 kN.

The torque developed in the two sections of the rope during the trip is
shown in Fig. 4.8. The results are very similar to the constant C and T
factors model. That is due the linear shape of the torqﬁe—tension curves
of the particular rope as can be seen in Fig. A.1 of Appendix A. For the
ssme reason introduction of end rotation hardly changes the behaviour.

In order to investigate the influence of varying C and T factors on the
tail rope behaviour, the model was run utilizing the head rope
torque-tension curves, which are not linear (Fig. 3.13). Two cases were
studied:

(i) TFor the first case, we assume that an initial rotation of ten
positive turns were introduced in the rope. The winder operates
along the +10 degrees end rotation curve of Fig. 3.13. The torque in
the two sections of the tail rope is shown in Fig. 4.7.

(ii) For the second case, we assume that an initial rotation of twelve
negative turns was introduced in the tail rope. In that case the
winder operates along the -10 degrees end rotation curve of
Fig. 3.13. The torque in the two sections of the rope is illustrated
in Fig. 4.8.
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In both cases the torque in the two sections of the rope is less than the
case where the tail rope data were used. The shape of the curves is also

different and the torque in the downgoing rope is not a linear function of
the travelled distance.



si0q0e] ], puB O STgeTIBA 03 adox [IB} 8Yyj url anbioj g sandry

w/w (Y/ny Pa]IdADJI] BOUD3SI(

D T H @_ m. R.- @. m. Av_ m_ N. ‘ ﬂ. O T O . ODﬁl

adox Furo3umo(q
10
1 00T
1 00¢
1 00E
adox guto8dp

00t

WN éanol



-81-

20
oL Upgoing. rope

E
=z
a
g 20+t
[
(8]
‘_

_40_

Downgoing rope
W0 —F g5 3 7 .5 .6 7 .8 .9 LO
Distance travelled (u/h) m/m
Figure 4.7 Torque in the rope for ten turns positive initial
rotation.
Varisble C and T factors.

-180

-200 Upgolng rope
13
=z
S
o -210 F
|
o
— _ o

-220 .

Downgoing rope
20— T3 .3 .3 .5 .6 .7 .8 .9 L0
Distance travelled (u/h) m/m
Figure 4.8 Torque in the rope for twelve turns negative initial

rotation.
Variable C and T factors.



-82-

3. ON-SITE MEASUREMENTS ON A KOEPE WINDER

In order to select a suitable site for experimentation the theoretical
model of the head rope with constant C and T factors was applied to the
twenty deepest South African Koepe winders. The data for these winders
were available from the winder data bank of the Mine Hoisting Technology

program of the CSIR. Estimated values for the rope data were obtained
from the Haggie Rand Ltd Wire Rope Handbook{24> and from test results
availiable at CSIR<33>, In all winder cases the difference between the

maximum and the minimum value of the expected torgue during the trip was
below 203 Nm. Ten winders which gave the highest torque difference were
selected and a 1list was forwarded to the Chamber of Mines Research
Organization for assistance to get access to one of these winders to do
the experimental work.

The West Driefontein No. 5 shaft British General Electric (BGE) Koepe
winder was made available for the on site measurements. The torsional and
tensile load in one of the four head ropes of the winder and one of the
four tail ropes were measured during two consecutive double trips. The
head rope rotation during a trip was determined from a chalk test.

Recording of measurements for further trips was not possible due to the
limited time the winder was available.

5.1 Measurement of Torsional and Tensile Loads During a Trip

The objective of the experiments was to measure the variation of the
torque in the head and tail rope during a trip. The tensile loads in the
ropes at the conveyance were also measured.

Measurement of the loads was done by strainganging certain components in
line with the ropes which served as loadcells. The loadcell design and
the instrumentation used during the tests are described in the following

paragraphs.
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5.1.1 Head rope loadcell

A configuration of the head rope attachment of the West Driefontein
four-rope Koepe winder is shown in Fig. 5.1. The dynamometer link was
chosen as the most suitable component to be straingauged and serve as a
joasdcell for torque and tension measurements in one of the head-ropes.

The stand-by 1link, identical to the one on the winder, was brought to the
laboratory of the Mine Hoisting Technology programme of the CSIR where an
experimental strain sanalysis study was done. The slotted cross section
was identified as the cross section where both tensile and torsional
strains were higher. Two full bridges, one for tension and one for
torsion (Fig. 5.2) were cemented on the link installed on the winder.

5.1.2 Tail rope loadcell

A configuration of the tail rope suspension gear is shown in Fig. 5.3.
~ The four swivels are usually locked by means of bars 1 and 2. Plates 3
and 4 were strainganged with a full bridge each to serve as a tension
loadcell (Fig. 5.4).

In order to measure the torque in the tail rope the bending loadcell
jllustrated in Fig. 5.5 was manufactured. This loadcell was installed in
the position marked by the line aa in Fig. 5.3. The pair of bars S5 and
6 prevented rotation of three of the swivels and the pair 7 and 8
constrained plates 3 and 4 which supported the rope to be measured. The
torque in that rope was measured by the bending strain in bar 7 which is
prevented from rotating by pins 1 and 2 attached to bar 5.

5.1.3 Calibration of the loadcells

The dynamometer 1link which served as the head rope loadcell, was removed
from the winder for a yearly inspection and service two months after the
experiments and was brought to the lsboratory of the Mine Hoisting
Technology program for calibration. The straingauges were in a good
condition and only minor repairs were necessary. -



Dynamometer link

Figure 5.1 Head rope attachment

D

O

Figure 5.2 Head rope loadcell
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The calibration of the tension bridge was done on a 5 @23 kN tensile
testing machine. The same instrumentation and wiring that was used for
the experimental work at the mine was used for the calibration of all
loadcells. The tension bridge sensitivity was 108,3 kN/V.

The torgue ' bridge was calibrated using dead-weights. The conveyance side
of the dynamometer 1link was rigidly held. A lever was fitted in the pin
hole on the other end of the link and dead weights of known mass were
applied to the lever. Torgue was applied in both directions. The torque
bridge sensitivity was 641,8 Nm/V.

The plates which serve as the tail rope tension loadcell could not be made
available by the mine for calibration. The only availiable alternative
was to straingauge and calibrate the stand-by plates which are identical
to the plates on the winder. As in the case of the original loadcell, a
full bridge was cemented on each plate. The algebraic sum of the two
bridges output was used for both the calibration and the analysis of the
results. The sensitivity of the loadcell was 24,4 kN/V.

The calibration of the tail rope torque loadcell was done on a 122 kN
Universal Amsler testing machine. A force was applied by the machine at
the point where the pin was touching on the bar, while the bar was
supported at the other end in the same manner as on the winder. The
bridge sensitivity was 312,5 Nm/V.

5.1.4 Instrumentation and procedure

A configuration of the data acquisition system used during the
measurements is shown in Fig. 5.8. The signals from the five loadcells
were samplified and then recorded onto a frequency modulation tape recorder
with & built-in calibration facility. In order to be able to correlate
the signal from the loadcells with the travelled distance an infra-red
bunton detector was used. The detector was giving a pulse each time the
cage was passing a bunton. The data recorded onto the tape were plotted
onto a chart recorder after each trip.
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All instrumentation with the exception of the chart recorder was
accommodated in the cage. Power for the amplifiers, tape recorder and
bunton detector was supplied by two 12V batteries.

Before each trip calibration signals using both the amplifiers’ and the
tape recorder’s calibration facilities were recorded on the tape. The
cage then travelled from the top to the bottom station of the shaft. At
the bottom it rested for about three minutes and then it travelled to the
top. Two consecutive double trips were run. The travelling speed during
the first trip was approximately 11 m/s which is the normal operating
speed when men are transported. The speed during the second trip was
5 n/s. This difference in speed was planned in order to investigate the
effect of speed. The distance from the top to the bottom stations of the
shaft was approximately 1 700 m. '

5.2 Analysis of Results

Similar results were obtained during both trips. The analogue signals
from the five loadcells and the bunton detector during the second trip are
shown in Fig. 5.7. Channel one is the signal from the head rope tension
loadcell. Channel two is the signal from the head rope torque loadcell.
Channels three and four are the signals from the two tail rope tension
loadcells. The signal from the tail rope torque loadcell was recorded on
channel 5 and the bunton detector signal on Channel 6.

Figure 5.7 provides an overview by showing all the results together. For
the purpose of measurement or detailed analysis outputs from the tape
could be either digidized or expanded as in Fig. 6.4 in the next chapter.

High torsional oscillations were experienced in the head rope. The
amplitude of the oscillations in some cases was greater than 592 Nm while
the difference between the static torsional load at the beginning and end
of the trip wss only 130 Nm. Using a least square method, second degree
polynomials were fitted to more than 25008 points of digitized
torque-tension results for the head rope. Assuming a linear relation
between rope tension and travelled distance (rope’s linear weight),
relations were derived for the torque in the head rope during the trip.
The results obtained through this approach were -~confirmed with
measurements of +the expanded analog signal. The resulting curves which
jllustrate the torque in the two sections of the rope during the trip are
given in Fig. 5.8.
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In order to assess the nature of the torsional vibration an analysis of
the torsional and tensile vibrations of the head rope is presented in the
following chapter.

The torgue in the tail rope is shown in Fig. 5.8. For the first 999 m of
the trip the torque in the downgoing rope remained constant, while during
the last 820 m it decreased by approximately 192 Nm. During the first
19 m of the upgoing trip the torque in the tail rope decreased by
another 62 Nm. For the next 1998 m it increased by 250 Nm to the initial
value and remained almost constant until the end of the trip.

The torque in the tail rope during the downgoing trip remained constant
for the first 9% m. For the last 800 m it decreased linearly by
approximately 199 Nm. During the first 100 m of the upgoing trip the
torque in the tail rope decreased another 68 Nm. For the next 1009 m it
jncreased 1linearly to the initial value and remained constant until the
end of the trip. '

5.3 Chalk Test and Lay Length Measurements

The number of turns that the head rope rotates during a trip was measured
by the chalk test. Paint was sprayed on the instrumented downgoing head
ropes just below the driving wheel. A thin spiral line was drawn on the
rope. The line was observed during the following upgoing trip. The line
rotated progressively to a maximum of about 45° at the middle of the trip
and then came back to zero degrees}

Lay length measurements at the top and the bottom of the shaft were almost
identical. That was nevertheless expected taking into account the small
variations predicted from the theoretical model.

As a matter of interest the diameter of the rope was measured at the upper
station on portions of the rope which pass over the driving wheel and on
portions which do not. For portions of the rope close to the coneyance
that do not pass over the driving wheel the mean diameter was 43,5 mm.
For portions that pass over the driving wheel the mean diameter was
41,5 mm. The difference in diameter between the two-portions can be
attributed to wear of the outer wires of the head rope and strands bedding
in effects.
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6. TORSIONAL AND LONGITUDINAL VIBRATIONS OF KOEPE HEAD ROPES

As was mentioned in the previous chapter, due to the high level of
torsional oscillation amplitude compared to the static torque values an
analysis of the torsional and longitudinal vibrations of a Koepe head rope
was done. In the following paragraphs the free,tofsional and longitudinal
vibration of a Koepe head rope are analysed. The derivation of the
differential equations of motion for both the torsional and longitudinal
vibrations and their solutions can be found in Appendix E. The
interaction of the two types of vibration, which involves nonlinear
analysis, has not been considered.

6.1 Free Torsional Vibrations of a Koepe Head Rope

The differential equation of the torsional vibration of the head rope is

(028/0t2) = (G/P)(028/9=2) - (8.1)
where

] : Is the angle of twist in the rope.

G : Is the effective shear modulus of the head rope.

P : Is the density of head rope material.

As was shown in Appendix E the solution of equation 6.1 is

B(z,t) = u(z).v(t) (6.2)
where
u(z) = Az cos(Aiz) + Be sin(Az) (6.3)

v(t) = At cos{ot) + Bt sin(et) (6.4)



® is the angular fregquency of the torsional vibration and
A=w/Gm _ ~ (8.5)
is the eigenvalue of equation 6.3.

Az and Bz are constants determined by the boundary conditions and Ae
and Bt are constants determined by the initial conditions.

Since both ends of the head rope (Fig. 6.1) are restricted from rotating
the boundary conditions are:

For z = =0 (6.8)

Forz=1 ® =0 (6.7)

where

2 : Is the position on the rope measured from the'driving wheel
downwards.

1 : Is the length of the rope between driving wheel and conveyance.

The first boundary condition after substitution into eguation 6.2, taking
into account equations 6.3 leads to Az = @

From the second boundary condition we have that

u(l) = Bz sin(Al) = @ (6.8)
For Bz # @ the above equation leads to

Al = kn for k=1, 2, 3, ... (6.9)

Substituting A from the above equation into equation 6.5, and rearranging
the terms the angular frequency of torsional vibrations becomes

w = kdG/p /1 for k=1, 2, 3, ... (6.19)
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Taking into account that f = @ /2n where f is the freguency of the
torsional vibration leads to

f = kfG/p /(2D for k=1, 2, 3, ... (6.11)

The effective shear modulus of the head rope was calculated in Appendix F
and was found equal to 12 GPa. Taking the density of the rope material
equal to 7822 kg/m® the frequencies of the first four modes of torsional
vibration of the head rope were calculated and plotted in Fig. 6.2.

6.2 Free Longitudinal Vibrations of a Koepe Head Rope

The differential equation of the free longitudinal vibration of the head
rope is

(02u/0t2) = (E/p)(92u/dz2) (6.12)
where

u: Is the displacement in the rope.

E: Is the effective modulus of elasticity of the head rope which is

assumed constant.

The solution of the differential equation as was shown in Appendix D is

u(z,t) = u(z).v(t) (6.13)
where

u(z) = A=z cos(Az) + Bz sin(iz) (6.14)
v(t) = Ae cos(et) + Be sin(ot) (6.15)

o is the frequency of the longitudinal vibrations and
A =o0/dE/p ' (6.16)

is the eigenvalue of equation 6.14.
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Az,, Bz are constants determined by the boundary conditions and Ae
and Bt constants determined by the initial conditions.
Since the rope is fixed at its top end, the first boundary condition is
for z =0 u=-9o (8.17)
which leads to Az = @

The tensile force at the bottom end of the head rope must be equal to the
inertia force of the attached mass. So the second boundary condition is

for z =1 AE(du/dz) + me(32u/dt2) = 0 (6.18)
where

A : Is the metallic area of the rope’s cross section.

me : Is the attached mass.

Mt = Me + Mp + Me/2 + gqe(h+a+b - 1) (6.18)
where

Mo Is the mass of the conveyance.
i Is the mass of the payload.

ma : Is the mass of the tail sheave.

at Is the mass of the tail rope per unit length.
h, a, b and 1 as shown in Fig. 6.1.

The first two components, me and mp, in equation 6.19 can be treated
as a rigid body mass. However, the other two components may not be
vibrating in unison with the conveyance. Trerefore their inclusion in
equation 6.18 implies an approximation which may be justified in view of
the low level of vibrations experienced in the measurement of tension in
the tail rope (Fig. 5.7, channels 3 and 4).
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Substituting u froﬁ equation 6.14 into equation 6.18 yields.

AE v(t)(du/dz) + meu(z)(a2v(t)/ot2) = @ (6.20)
Differentiation of u from equation 6.14 leads to

(0u/0z) = ABe cos(Al) (6.21)

From equation 6.15 with double differentiation we get

02v(t)/ot2 = -02Ae cos(ot) - 02Be sin(ot) (6.22)
or
02v(t)/ot2 = -w2v(t) (6.23)

Substituting the wvalues of u, ou/ 9z and d2v/90t2 from equations 6.8,
6.21 and 6.23 respectively intoc eguations 6.20 yields

AE A cos(Al) - meow? sin(Al) = @ . (6.24)

which taking into account that A= w/Jﬁ/p can be written as

Otand = e (8.25)
where

8 =0l/fEp (6.26)
e = Alp/me (86.27)

Equation 6.26 was solved numerically. A graphical representation of the
solution is shown in Fig. 6.3. The effective modulus of elasticity of the
rope was calculated in Chapter 2 and was found equal to 116 GPa Taking
into account that o = 2nf the frequencies of the free longitudinal
vibration are given by the relation

= /B /(2rl) (6.28)
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The frequencies of the first four modes of the longitudinal vibration
the head rope were calculated and plotted in Fig. 6.2 as well.

\J .
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Figure 6.1 Notation for vibration analysis
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6.3 Comparison Between Experimental and Theoretical Results of the
Vibration Analysis

The measured tensile and torsional 1loads in the head rope for four
different values of the travelled distance are shown in Fig. 6.4.

Perusal of Fig. 6.2 and 6.4d reveals that the head rope is vibrating
according to its natural freguency at the end of the trip. Both the
measured and the calculated frequencies are 9,4 Hz.

It is possible that at the beginning of the trip the rope vibrates
according to its natural frequency as well. However this is not certain
since an excitation frequency of 4,7 Hz is evident throughout the trip.

Beating and high amplitude values for the torsional oscillations were
experienced at 4580 m below the sheave. A possible explanation for the
resonance is that the 4,7 Hz excitation frequency is very close to the
frequency of the third mode of torsional oscillations for that position in
the shaft.
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7 DISCUSSION

7.1 Comparison Between Theoretical and Experimental Results: Head Rope

Discrepancies were found between the results of the theoretical model and
the results of the experiments at the West Driefontein Koepe winder.

The torque measured in the two sections of the head rope during a trip at
the West Driefontein winder and the values predicted by the theoretical
model (constant C and T factors) were plotted in Fig. 7.1. Three main
differences were identified between the theoretical and experimental
results and are discussed below.

a. The experimentally measured torque difference between the two
sections of the head rope at the start of the trip was 139 Nm. The
torque difference predicted by the theoretical model was only
185 Nm. This represents a difference of 20%. From Fig. 3.24,
reproduced here as Fig. 7.2, the torque difference calculated by the
variable C and T factors model, assuming zero initial rotation in the
the rope, is even lower at 92 Rm. Figure 7.2 shows that in order for
the theoretical model to calculate the same result as the measured
value we must assume that an inifial rotation in excess of 50
positive turns was introduced in the rope.

b. The measured rope rotation (chalk test) was only 45° while the value
predicted by the constant C and T factors theoretical model was
approximately  two and a half turns. From Fig. 3.25, reproduced here
as Fig. 7.3, the rope rotation calculated by the theoretical model
with variable C and T factors, for =zero initial rotation, was
slightly less than two full rotations. Figure 7.3 shows that the
theoretical model would have calculated the same rotation as the
measured one if we had assumed that an initial rotation of 40
negative turns was introduced in the head rope.
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¢. The measured torque in the downgoing section of the head rope did not
follow the rapid changes predicted by the theoretical model during
the first stasges of the trip.

7.1.1 Torque difference

The torque difference between the two sections of the rope at the start
of the trip for the case of constant C and T factors, as was shown in
Appendix B, is a function of the torque factor C:

M2,u - M1,u = Cgh (7.1

The 20% difference between the measured and calculated values can
therefore be justified by a similar difference between the assumed torgue
factor of @,2087 Nm/N and the actual torque factor of the rope. Although
a 20% difference appears to be high it is not unrealistic taking into
account the number of assumptions made for the calculations.

The rope specimen tested in the laboratory to determine the torsional
properties was cut from a discarded rope after completing 200.000
cycles. The rope installed on the winder at the time of the measurements
had completed only 102.000 cycles.

As was shown by Yiassoumis and Stevenson<37> differences as high as 12%
were found between the C factor of identical ropes manufactured at
different times. Yiassoumis<3€.32> has also shown that the torsional
properties of the ropes change with cycling. Changes as high as 30% were
found during laboratory tests after a new rope was subjected to tension
torque loading for only a few cycles. A change of 30% after a few cycles
is of course a result of the bedding-in process of the rope, but it is
also indicative of the changes that can be expected after prolonged
cycling in service.



-167~

7.1.2 Rope rotation

The calculated downgoing rope rotation (chalk test results) was
approximately two turns while the measured value was only 45°. However
the 1line drawn on the rope during the experiments had the same shape as
the line predicted by the theoretical model, i.e. it was a parabola:

N =zauth - u)

with a maximum at u = h/2 and zero rotation at the start and the end of
the trip, i.e. for u=® and u = h respectively. Where a a factor.
As was shown by the theoretical model, for the case of constant C and T
factors model, equation 3.9, the factor a is a function of the rope
properties:

a = k/368° = (Cq/T)/360°

It is therefore submitted that although there is a substantial difference
between the measured and calculated rope rotation, this difference is due
to sassumptions made regarding the properties of the rope. Although
properties were measured in the laboratory on samples of the same
construction assumptions were made regarding the relevance of these
measurements to the ropes at the West Driefontein shaft. Further
assumptions were made regarding the variation of these properties as
discussed below.

For the theoretical model calculations it was assumed that the shape of
the torque-tension curves was the same during loading and unloading i.e.
hysteresis was neglected. The loading curves were used for both the
upgoing trip (during which the tensile load in each rope element is
jincreasing) and for the downgoing trip (during which the tensile load is
decreasing).

But becsuse of torsional hysteresis the torque in a rope element of the
downgoing rope can be decreased without or with little change of lay
angle. This is illustrated in figure 7.4. A rope element at the
torque-tension condition A is entering the downgoing section of the
rope. After a distance Au is travelled the element is at the torque
tension condition B. If hysteresis is neglected the lay angle of this
element will be readjusted from the twist condition ti to the twist
condition tz. But as a result of the torsional hysteresis the element
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can reach the torque tension condition B without changing its lay angle.
Therefore no rotation is induced in the downgoing rope during the
travelled step A\u. The cumulative effect of this action is that the
rotation of the downgoing rope 1is less than that predicted by the
theoretical model.

Torgue

—— Loading

[ W N U NN N TN GO (U NS0 JNUN WA N S AN HNN T N O N W S

————— Unleading

1 I J i

Tension

Figure 7.4 Effect of torsional hysteresis on rope rotation
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As is illustrated in Fig. 2.5 the torque difference between loading and
unloading curves for ©° end rotation at 25 kN is 70 Nm. The 70 Nm
torque difference is more than 59% of the total torque variation in the
rope during the trip. Hysteresis effects can therefore reduce
considerably the downgoing rope rotation and could account for the full
difference between the calculated and measured rope rotation values.

The assumption was made in the theoretical model calculations that the
initial rotation on installation was zero. As was stated above, in order
to match the theoretical results for the torque difference at the
beginning of the trip with the experimental ones we must assume an
initial rotation in excess of 5@ positive turns. In order to match the
calculated rope rotation of two full turns with the measured one of 45°,
we must assume an initial rotation of 45 negative turns. This apparent
discrepancy between the measured torque difference and rope rotation
would have been significantly less if torsional hysteresis effects had
not been ignored. The torsional stiffness of the rope, as discussed
below, may also account for some of this discrepancy.

The torque difference in the two sections of the rope at the start of the
trip is:

M2, - M1, = Cgh | (7.1)
The rope rotation is calculated from equation 3.8

N = kuCh - u)/360° (3.9
and for u = h/2

N = kh2/1440° (3.12)
where k = Cq/T

Comparing equations 7.1 and 3.18 we see that while the torque difference
is a function of the C factor only, the rope rotation is a function of
both the C and T factors. The discrepancy between torque difference and
rope rotation can therefore be explained if the T factor of the rope
instalied on the winder was higher than the T factor values used in the
theoretical model. A higher T factor will not affect the torque
difference calculations but it will reduce the calculated rope rotation.

|
!
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Hobbs and Racof<4®> have shown that both the axial and torsional
stiffness of a wire rope are significantly larger for small load changes
than for large perturbations. In the case of small load changes a
non-slip situation exists between the individual wires of a rope and
therefore the rope is stiffer. Graphs of theoretical and experimental
results for a single strand indicate that the .non-slip torsional
stiffness is three times higher than the full slip condition.

Work done by the author<37> has indicated a similar behaviour for the
axial stiffness of a wire rope for very low tensile loads. The modulus
of elasticity of =a rope for very low loads is significantly higher than
for moderate and higher loads. This is partially illustrated in
Figs. 2.12 and 2.13. These results are in agreement with Raoof and Hobbs
since the tensile load increment step for low tensile loads was only a
fraction of the approximately @,7 kN step for higher tensile loads.

Because of limitations of the available torgue-tension machine this could
not be experimentally confirmed for the torsional stiffness as well. The
torsional stiffness measured according to the procedure of Chapter 2 is
indicative of large load changes where the individual wires of the rope
can slip on one another. Therefore it might not be representative of the
rope behaviour in service. Because of the high torsional oscillations
measured during the experiments at the West Driefontein winder it is not
possible to reach a conclusion whether the rope operated in the slip or
non-slip condition.

7.1.3 Rate of torque change

The third difference between theoretical and experimental results i.e.
the sabsence of rapid torque chandes in the downgoing rope during the
first stages of the trip can be attributed to a number of reasons such

as:

a. Experimental errors introduced due to the high level of torsional
oscillations.
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The fact that the West Driefontein winder incorporates a deflection
sheave while the model assumes that there is no deflection sheave.
Although the measurements were done on the side of the winder where
there is no deflection sheave the torque and especially the torque in
the downgoing rope might have been affected by the additional
restriction imposed by the deflection sheave.

Differences in the shape of the torque-tension curves that were used
for the theoretical model calculations and the torsional properties of
the rope installed on the winder. As discussed the torsional
properties of ropes vary with cycling and may also vary between ropes
of the same construction but different manufactures. Since each
section of the rope is subjected to a different tensile, torsional,
and bending load cycling, the torsional properties of the rope
possibly vary along its length. In such a case the shape of the
torque-tension curves will vary along the length of the rope.

Variations in the torsional properties along the length of the rope
are also caused by non uniform wear. As was mentioned in Chapter 95,
the diameter of the two rope portions close to the conveyances that do
not pass over the driving wheel was 5% larger than portions that pass
over driving wheel. At the start of the trip the downgoing rope has a
length equal to the overrun distance, 25 m for the West Driefontein
winder. These 25 m of rope are of larger diameter than the rest of
the rope since they are not subjected to any external wear. During
the trip, rope of smaller diameter and therefore different torsional
properties is entering the downgoing section. The difference in the
torsional properties will affect the torsional behaviour and the
effect will be more pronounced at the beginning of the downgoing trip
when the rope portions with different torsional properties are of
similar lengths.

The fact that hysteresis was neglected. As was discussed in the
previous paragraphs, in the theoretical model calculations it was
assumed that the shape of the torque-tension curves was the same
during loading and unloading and in fact the loading curves were used
for the calculations. This assumption does not affect the upgoing
rope since the tensile load in each element is increasing during the
trip, but it does affect the downgoing section where the tension in
each element is continually decreasing.
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7.1.4 Torsional oscillations

The high 1level of torsional oscillations in the head rope could not be
attributed with certainty to any particular reason. Further analysis in
that respect was beyond the scope of the present dissertation due to the
complexity of the matter<4il>,

7.2 Comparison Between Theoretical and Experimental Results: Tail Rope

7.2.1 Locked swivels

The torque measured in the tail rope during a trip and the values
predicted by the theoretical model (constant C and T factors) were
plotted in Fig. 7.5. The differences between the theoretical and
experimental results are outlined and discussed below.

a. The measured torque difference between the two sections of the tail
rope wWas approximately 200 Nm. The value predicted by the
theoretical model with constant C and T factors was double the
measured value i.e. 428 Nm. The value predicted by the variable C
and T factors model, for =zero initial rotation introduced in the
rope, was slightly lower at 359 Nm. Since the tail rope operates at
low tensile loads, approximately 5 kN to 150 kN, where the shape of
the torque-tension curves is not linear it was expected that the
constant C and T model will overestimate the torque values. On the
other hand for the case of the variable C and T model, as was
discussed in Chapter 4, because the available data for the rope
torsional properties did not extend to the very low tensile load the
rope operates, the weight of the tail sheave was assumed higher than
its actual value. This assumption also causes the theoretical model
to overestimate the torque values. In addition to these reasons the
discrepancy can be attributed to the fact that rotation is
periodically released from the tail rope by unlocking the swivels.

b. Although the torque in the upgoing rope followed generally the
pattern predicted by the model, a drop in the torque during the first
190 m of the trip was measured which was not predicted by the
theoretical model.
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¢. For the first 990 m of the trip the measured torgue in the downgoing
section of the rope remained almost constant while for the following
8 m it reduced by approximately 199Nm. The constant C and T
factors model predicted a linear decrease of the torque in the
downgoing section of the rope during the entire trip.

The last two differences imply significant differences between the actual
shape of the torgue-tension curves and the shape of the curves utilized
for the theoretical model i.e. inaccurate C and T factors. One source
for this inaccuracy is the length of the test specimen. Aust<42> has
shown that the 1length of the test specimen has an effect on
torque~-tension test results. Because of the restriction of any movement
of the wires at the end fittings a variation of the level of stresses was
measured along the length of the rope sample. Therefore a short specimen
length, 1like the one used during the laboratory tests, is expected to
give less accurate results than a long specimen. The effects of the
specimen’s length are currently under investigation by the author.

7.2.2 Free swivels

The wvalidity of the theoretical model of the tail rope where swivels are
free and no tail sheave is installed, was proven by observations at the
Mount Isa EKoepe winder in Australia. The loop rotation was video-taped
by Mr. E.J. Wainwright of Haggie Rand Ltd and the tape was made available
to the author. The tail loop rotation follows the pattern predicted in
Fig. 4.6.

7.3 Summary of Discussion on the Differences Between Theoretical and
Experimental Results

The theoretical models have not been fully verified by the experiments at
West Driefontein. The models have predicted correctly the trend and the
direction of wvariation for both the torque in the ropes and the rope
rotation but they did not accurately predicted the magnitude of these
variations. The theoretical models have therefore correctly qualified
but not accurately quantified the ropes” behaviour.
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From the discussion in the preceding paragraphs 7.1 and 7.2 the
discrepancies can be attributed to two groups of factors:

a. Assumptions made in the theoretical model, such as the assumption
that the shape of the torgque tension curves is the same during
loading and unloading.

b. Experimental errors, either during the tests at West Driefontein or
during the lsboratory test to measure the rope properties.

The discussion on the ropes’ behaviour that follows and the conclusions
and recommendations that were reached are primarily based on the findings
of the theoretical models.

7.4 Discussion on the Behaviour of the Head Rope

The number of turns that the head rope rotates during the downgoing trip
(chalk test), as shown by equation 3.18, is a function of two parameters:
the  hoisting depth, h and the factor k which combines the rope
properties.

N = kh2/1440° (3.19)

Since the rotation of the rope is a function of the square of the
hoisting depth, h, it will be significantly higher for deeper shafts.
This explains why problems manifested themselves in the deep South
African shafts.
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7.4.1 Comparison with the previous theoretical model

Equation 3.10 is the same as the one derived during the first attempt to
study the torsional behaviour of Koepe head ropes in the late nineteen
fifties<2>, Despite the fact that the wrong assumptions were used at
the time, the equations that calculate the rope rotation in that report
are right because two errors introduced in the analysis cancelled each
other.

Firstly it was assumed that the the torque in each rope element is
proportional to the tensile load in the element:

M =CP + Cq(z + u) (Equation 3 in reference 2)
from were df = Cq.dz

Secondly it was assumed that the variation of the relative rotation along
the rope is a function of the torque variation along its length:

d®/dz = 1/Tr dM (Equation 4 in reference 2)
| _

combining the two equations leads to the correct relation
d® = 1/T(Cqz + A)dz (Equation 5 in reference 2)
where A is an integration constant.

No attempt is made to calculate the torque in the head rope in that
report.

7.4.2 Discussion on the C and T factors

As stated in Chapter 1 (Review of Literature) a reduction of the rope
rotation is beneficial. This can be achieved by reducing the factor k
which is a function of three rope properties: the torque factor, the
torsional stiffness and the weight of the rope per meter length.

k = Ca/T
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A rope with a 2zero torque factor (C = @) would eliminate torsional
problems on Koepe winders. The torque in the upgoing and the downgoing
ropes is calculated by equations 3.2 and 3.4 reproduced below:

Mi,u = CP + Ca(h/2 + a2/Ln + u) + BinT/Ln (3.2)

CP + Cq(h/2 + a2/Ln + ath - u)/(a + u)) +®1nT/Ln (3.4)

1]

Mz,u

For a rope with =zero torque factor the torque in both sections is =
function of the rotation introduced on installation, ®in:

Mi,u = ®1nT/Ln (7.2)

If negative rotation is introduced in a multi-strand non-spin head rope on
installation the inner strands of the rope will carry a higher percentage
of the total tensile 1load, as shown in Chapter 2, Fig. 2.14. This will
result in the outer strands becoming slack which, as was discussed in
Chapter 2, will increase the probability of rope birdecaging. This is
confirmed by field experience: Ropes with a very low torque factor are
more susceptible to birdcaging.

A certain amount of positive torque, which tends to tighten the outer
strands, is therefore desirable in the head rope. This is not
incompatible with the desirability of low rope rotation. As is explained
below, it is not the absolute value of the torque in the rope that creates
the torsional problem but the torque difference in the two sections of the
rope.

The change in lay angle of an element entering the downgoing section of
the rope as was shown in Appendix B is:

B2 - 01 = ((Mz,u - M1,u)/T)r.cos28 (7.3)
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This sudden change of the lay angle which in fact induces the rope
rotation is proportional to the torque difference Mz,u - Mi,u and not
to the absolute value of the torgue in the two sections of the rope.
However, although the torgque factor C does not appear explicitly in
equation 7.3 it is embedded in the terms for Mz,u. and Mi.u.
Therefore, for constant C and T factors, a low torque factor C reduces the
torque difference and the change in lay angle occurring at the top of the
descending rope.

For the case of varisble C and T factors (which is the case for non-spin
ropes) it may be feasible to shape the torgue-tension curves in such a way
that, although the individual torque values are high, the torque
difference in the two sections of the head rope is maintained at
reasonably low levels.

The same result i.e. high individual torque values in the two sections of
the head rope but 1low lay angle changes can be achieved, according to
equation 7.3, by a higher T factor.

The above discussion indicates that it is feasible to reduce the head rope
rotation while a residual amount of torque is maintained in the head rope
(C #@). It was also shown that a rope with such properties is either one
with a high T factor and/or, perhaps, an appropriate shape of torque
tension curves.

In the mining and rope manufacturing industry great concern is placed on
the C factor of a non-spin rope. In fact non-spin ropes are designed
and selected for applications on Koepe winders on the basis of the C
factor. Through the theoretical model the significance of the T factor
for the torsional behaviour of the head ropes has been demonstrated. In
fact the improvements in rope performance achieved with the installation
of non-spin ropes are primarily a result of their high T factor rather
than their low C factor as shown below.
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A typical value of the T factor for a non-spin rope is 5@ Nm/(deg/m),
Fig. 2.9. From Fig. 2.8 the T factor for an equivalent triangular strand
rope is only 3 Nm/{(deg/m). A typical value of the C factor for a
non-spin rope is B,7 Nm/kN, while for a triangular strand rope the
equivalent value is & Nm/kN, Figs. 2.6 and 2.7. The T factor of a
non-spin rope is therefore 17 times higher than that of a triangular
strand rope while its C factor is only 7 times lower.

The k factor of a triangular strand rope is therefore approximately 120
times higher than that of a non-spin rope. The installation of non-spin
ropes on Koepe winders has therefore reduced the rope rotation by a factor
of 128. The T factor contributed 71% to the total reduction while the
C factor only 29%.

7.4.3 Discussion on the rope weight, g

By definition the k factor is proportional to the weight of the rope per
meter length. The head rope rotation, is therefore a function of the
gradient of the tensile load along its length and not of the absolute
value of the suspended load (for ropes with variable C and T factors the
rope rotation can be a function of the suspended load as well). A lighter
rope will therefore improve the torsional behaviour of the head rope.

In the case of two Koepe winders serving the same shaft, equipped with the
same conveyances, carrying the same payload and operating with ropes of
the same construction but different diameters i.e. different rope weights,
the winder with the lighter rope will have better torsional behaviour.
This winder will have a smaller factor of safety.

As shown by the author<4l> non-spin ropes of identical construction but
different tensile grades have similar torsional properties. Following the
considerations of the above paragraph higher tensile grade ropes, and
therefore 1lighter ropes, will improve the torsional behaviour of a head
rope. Alternatively with higher tensile grade ropes higher payloads can
be hoisted without affecting the torsional behaviour of the head rope
detrimentally.
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7.4.4 Discussion on the loading and unloading process of the conveyances

For the range of working tensions involved in this discussion i.e. above
200 Nm, the C factor of a triangular or non-spin head rope is practically
constant (Figs 2.6 and 2.7). Therefore the k factor is inversely
proportional to the torsional stiffness, T. The torsional stiffness of
non-spin ropes is also relatively constant in that load range (Fig. 7.9).
Therefore, in the case of a non-spin head rope the loading and unloading
process does not influence the torsional behaviour, since the k factor
remains constant.

In the case of a triangular strand head rope loading and unloading does
affect the torsional behaviour. The torsional stiffness of a triangular
strand rope increases linearly with tension as is shown in Fig. 2.8.
Loading of the conveyance at the bottom of the shaft causes higher values
for the torsional stiffness. The k factor therefore decreases and the
relative rotation, equation 3.3 becomes smaller. A triangular strand head
rope therefore rotates during loading or unloading.

7.4.5 Discussion on the lay angle variations

The chalk line test, which measures the total number of turns the rope
rotates, is a good indicator of the torsional performance of a head rope.
However, the 1lay angle deviation is the more adequate varisble to study
variations of the performance along the length of the rope. As was shown
in Fig. 8.11 rope portions close to the two conveyances are subjected to
more severe lay angle variations during a trip than the rest of the rope.
Therefore, problems associated with the torsional behaviour of the ropes,
such as internal wesr due to inter-strand frictional movements or strand
distortion are more likely to occur in those areas.

Rope portions close to the conveyances are also subjected to the worst
conditions in terms of tension-tension fatigue. The tensile 1load
amplitude in those sections is greater than in the rest of the rope.
During rope inspection therefore special attention should be given to the
two rope sections close to the conveyances, especially to the parts that
are also subjected to bending as they pass over the driving wheel and the
deflection sheave if there is one.
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7.4.6 Discussion on rotation introduced in the rope

Introduction of end rotation into the rope during installation or during A
its service life would affect the area the winder operates in a
torque-tension curves diagram. Introduction of negative end rotation as
jllustrated in Fig. 7.2 would, in general, reduce the variation of the
torque during the trip. The number of turns the rope rotates according
to a chalk line test would also become less if negative rotation is
introduced to the head rope, Fig. 7.3.

Introduction of positive end rotation would, on the other hand, cause
higher torque variation during a trip and would also increase the number
of turns the head rope rotates. From Figs. 7.2 and 7.3 it is also
concluded that the torsional behaviour is more sensitive to the
introduction of negative end rotation. In other words greater variations
in the torsional behaviour would happen if for example ten turns are
introduced in the rope in the negative direction than if they are
introduced in the positive direction. This conclusion depends on the
shape of the torque-tension curves.

7.5 Discussion on the Behaviour of the Tail Rope

7.5.1 Tail loop formed freely without the use of a tail sheave.
The rotation of the loop is calculated by equation 4.10 reproduced below.
By = - (®e1(h + b — u) + Baz(b + u))/Le

- 2CPt(h + b = u)(b + u)/(TLe)

- Cq(h + b - u)(b + u)/(2T) (4.10)
It can easily be shown that if both swivels are locked
(®s1 = Qa2 = D), the loop rotation is maximum for u = h/2 (see

Fig. 4.2b). With Pt = @ this maximum is:

®e = - CqLe2/(8T) (7.4)
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The tendency of the tail rope to deform into a figure of eight is
therefore proportional to the square of the tail rope length. This
observation is nevertheless only of theoretical importance since for all
practical purposes in the deep South African shafts the two legs of the
rope will intertwine

The use of free swivels is absolutely necessary in deep shafts. The loop
rotations for two study cases of Chapter 4 are reproduced here in
Fig. 7.6. In the first case both swivels are free and their frictional
torque is constant and equal to 4@ Nm. In the second case both swivels
are also free but their frictional torque varies linearly with the
applied tensile load from 20 Nm to 49 Nm. Although the maximum
frictional torque is the same, the "more free" swivels in the second case
cause five times more loop rotation and the rope will intertwine.

As discussed in Chapter 4 the greater rotation of the tail loop in the
second case is due to the fact that the swivels do not rotate at the same
time. In order to satisfy the torque equilibrium condition when only one
swivel rotates, the loop is forced to rotate further.

The theoretical model indicates that for the case of a freely formed tail
loop it is of paramount importance that the frictional torque of the
swivels does not change significantly with the tensile load. In fact the
term free swivel is misleading. A tail rope equipped with swivels of
4% Nm constant frictional torque will operate better than if it were
equipped with swivels of frictional torque that varies with the tensile
load between 28 Nm and 42 Nm and which would have been classified as
a "more free" swivel.
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Figure 7.6 Tail loop rotation
a. Swivels with constant frictional torque

b. Swivels with variable frictional torgue
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7.5.2 Tail loop formed by means of a tail sheave.

The torque in the two sections of the tail rope is calculated by
equations 4.11 and 4.14. The torque difference in the two sections of
the rope is proportional to the C and q factors.

Mi,u - M2,u proportional to Cq (7.5)

The change in the 1lay angle, 82 - 01, as a rope element enters the
upgoing section of the rope is calculated from equations 4.13 and 4.18.
and it is proportional to the k factor

01 - 82 1is proportional to k (7.8)

Equations 7.5 and 7.6 are of the same form as equations 7.1 and 7.3 of
the head rope. It follows that the conclusions derived for the head rope
regarding the torque factor, the torsional stiffness and the weight of
the rope apply to the tail rope as well.

As in the case of the head rope it follows from figures 4.5b and 4.5c
that the two rope portions close to the conveyances are subjected to more
severe lay angle changes than the rest of the rope.

The tail rope is subjected to very low tensile loads. Since rotation is
periodically taken out of the rope it is likely that its inner strands
take a higher share of these low tensile load. The tail rope is
therefore more susceptible to birdcaging problems than the head rope. As
was discussed above the rope portions eclose to the conveyances are
subjected to the highest 1lay angle changes which are happening under
extremely low tensile loads. It is therefore more likely that birdcaging
problems will occur in the two rope portions close to the conveyances.
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7.8 Comparison Between Constant and Variable C and T Models

Modelling the behaviour of head and tail ropes with the assumption of
constant C and T factors resulted in explicit equations for the torque,
the lay angle deviation and the rope rotation. These equations have
proved useful in understanding the manner in which rope and winder
properties affect the rope behaviour. These equations are also help to
understand the interactions between those properties.

The results calculated by the head rope constant C and T factors
theoretical model were very similar to those of the variable C and T
factors model. This is due to the fact that the C and T factors of
non-spin ropes are almost constant at the relatively high tensile loads
acting in a head rope. The constant C and T factors model is therefore a
good approximation of the head rope’s behaviour. The approximation is
less satisfactory for tail ropes because the C and T factors for the
majority of non-spin rope constructions are not constant at the low
tensile loads acting in tail ropes. However both constant C and T
factors models are useful tools for a quick assessment of a rope’s
behaviour.

The wvarisble C and T factors models _can be used for a more accurate

analysis of a rope’s ‘behaviour. These models also provide a means of
studying the effects of releasing or forcing rotations in a head or tail
rope. The constant C and T factors models can not account fully for

that because in equations 3.2, 3.4, 4.11 and 4.14 the initial rotation,
®in, affects only the level of the torque and rope rotation but not the
variation during a trip.

A further advantage of the variable C and T factors models may be their
use for identifying an optimum shape of the torque-tension curves for a
particular winder. Appropriate ropes may then be selected or designed
for that winder.
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7.7 General Discussion

The findings of this study can not be seen or implemented in isolation of
other factors that affect the general rope behaviour. Although the
torsional behaviour of Koepe ropes is one of the most important
parameters, especially in deep level mining, it is not the only one. A
best solution for a problem related to the torsional behaviour is not
necessarily the best solution for the general rope performance. TFor
example, a =zero C factor which eliminates rope rotation introduces other
problems such as birdcaging.

On the other hand a best solution for one winder is not the best solution
for every winder. This is implied by the great number of different rope
constructions designed for Koepe winders.

The selection of the "best rope" for a given winder is based on past
experience and a trial and error approach is adopted. It is often the
case that this approach is extremely expensive and time consuming. A
recent example 1is that of the Vaal Reefs number nine shaft Koepe winder
tail rope. During the last few vyears a number of different rope
constructions were tried, each one with limited success. This happens
despite the fact that ropes of the same construction operate successfully
on similar Koepe winders elsewhere.

Application of the theoretical model in such cases might reveal the
reasons of the poor rope performance. These reasons might not
necessarily relate to rope selection but could relate to rope
installation and operation procedures such as selection of tail rope
swivels and operating policy.

The principles developed during the course of the project have been
successfully implemented by the author to model the torsional behaviour
on triangular strand ropes on drum winders<43.44.45>  The generally
held opinion that trisngular strand ropes do not rotate on drum winders
installations was disproved by the model. Their rotation was
subsequently verified experimentally with on site measurements. Through
use of the model certain aspects of the behaviour of triangular strand
ropes on drum winders such as uniform wear pattern around the
circumference of tﬁe rope and wear mechanics have been explained.
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8 CONCLUSIONS AND RECOMMENDATIONS

As pointed out by Dr. J.T.D. Fritz previous research included an error in
the assumption that the torque in hoisting ropes varies along their
length. Assuming constant torgue, new theoretical models were
developed. The predictions of these models, based on laboratory
measurements of rope properties were tested on a working Koepe winder.

Difficulties were encountered during some measurements on a working Koepe
winder in the form of strong torsional vibrations. Such measurements
involve considerable preparation and coordination with officers on the
mine and could not be repeated. Nevertheless an attempt has been made to
extract results by analytical manipulation to eliminate the effect of the
vibrations.

8.1 Findings Related to the Measured and Calculated Results

Differences between measured and predicted behaviour involved the
following:

- The head rope rotation measured by the chalk line test, was
significantly lower than the calculated value. The difference is
attributed to:

a. The assumption mesde in the theoretical model that the
loading and unloading torque tension curves were the same,
i.e. hysteresis was neglected.

b. Differences between actual torsional properties of the rope
and those measured on a short sample in the laboratory.

- The differences between the measured and calculated torque values
in both head and tail ropes were substantial. However, these
differences could possibly be justified by:

a. The assumptions made in the theoretical model.

b. The fact that measurements were not done in a laboratory
under controlled conditions, but on site with unknown
factors and assumptions about the test conditions and the

rope properties.
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Despite the differences between the measured and calculated
values, the theoretical models have correctly predicted the
trends and direction of the variation of the torque and the rope
rotation. The models have therefore correctly qualified but not
accurately quantified the ropes” behaviour.

Findings Related to Previous Work

The work presented in this dissertation has confirmed certain conclusions

reached by previous researchers, namely:

The
and

The rotation of both head and tail ropes is a function of the
square of the hoisting depth.

The head and tail rope portions close to the conveyances are
subjected to the greatest lay angle changes. These portions are
also subjected to the most severe fatigue loading. Special
attention must %herefore be given to those portions during rope
inspection.

A rope with a zero C factor will eliminate lay angle variations
and rope rotation.

On Koepe winders where the tail loop is formed freely without a
tsil sheave it is necessary to install low frictional torque
swivels at both ends of the rope.

present study has also given theoretical proof to certain opinions
practices adopted by rope users over the years such as the fact that:

A rope with a zero or very low C factor is susceptible to
birdcaging problems. A certain amount of positive torque, which
tends to tighten the outer strands, is desirable in the head

rope.
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8.3 New Findings

The following findings, which the author believes to be new, follow from
this research:

- The 1lay angle variations and therefore the rope rotation for both
head and tail rope are a result of the torque difference in the
two sections of the rope and not of the absolute value of the
torque in the ropes.

- The torsional behaviour of multi-strand non-spin head ropes is
more sensitive to the introduction of negative than positive
rotation. '

- Multi-strand non-spin head ropes do not rotate when the
conveyances are loaded or unloaded. However triangular stand
ropes rotate during these processes.

- The variation, with tensile load, of the frictional torque of the
swivels on the two legs of a freely looped tail rope must be
minimum. This will ensure that both swivels rotate
simultaneously during the trip, preventing the two legs of the
rope from intertwining.

The following additional findings, supported by the author, are a matter
of controversy among rope users:

- The fact that both the head and tail rope rotation are functions
of the square of the hoisting depth should not be seen as a
limitstion to the application of the Koepe system to deep level
shafts. With proper rope design, rope selection and operating
procedures, the problems associated with the torsional behaviour

can be overcome.

- Lay angle variations and rope rotation can be minimised by
appropriate rope design. A rope with a high torsional stiffness
or an appropriate shape of torque-tension curves can give the

desired results.
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- Rope 1life improvements achieved with the installation of non-spin
ropes are mainly due to the higher torsional stiffness of these
ropes. Their lower torque factor has a lesser influence.

8.4 Recommendations for Further Work

Farther research, aimed at improving the quantitative accuracy of
predictions of rope behaviour, is recommended. In particular:

- Modelling of the torsional behaviour of the ropes taking into
account hysteresis effects will increase the accuracy of the
calculations. This however will result in a significantly more
complex algorithm. The condition of each rope element will
depend not only on the torgue and tension in the element but also
on the torque and tension history.

- Further experiments' on Koepe winders are recommended to measure
the torque variation in both head and tail ropes.

- Further investigation into the torsional properties of wire ropes
is recommended. Aspects such as variation of the torsional
properties of ropes along their length and effective torsional
stiffness of a wire rope in service should be investigated.
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